ANALISI MATEMATICA III (ELM+TEM) A.A. 2012-2013

Traccia delle lezioni del 25 e 27 marzo 2013

March 27, 2013

1 Il Teorema di Plancherel e la trasformata in \mathbb{L}^2

Vale il seguente:

Teorema di Plancherel - Sia $f \in L^2(\mathbb{R})$, Allora:

1) L'integrale (nel senso del valore principale)

$$v.p. \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$

esiste per ogni $\omega \in \mathbb{R}$, eccetto, al più, un insieme di misura nulla. Posto allora

$$F(\omega) = v.p. \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt,$$

si ha inoltre:

- 2) $F \in L^2(\mathbb{R})$
- 3) Vale la formula

$$f(t) = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega.$$

4) Vale l'identità:

$$2\pi \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega.$$

COMMENTI : la proprietà 4) è detta anche **principio di conservazione** della norma (o dell'energia).

La proprietà 1) suggerisce la seguente definizione.

DEFINIZIONE - Sia $f \in L^2(\mathbb{R})$; si chiama Trasformata di Fourier in L^2 , la funzione F definita da

$$F(\omega) = v.p. \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt.$$
 (1)

OSSERVAZIONE : se inoltre $f \in L^1(\mathbb{R})$, ossia $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, allora l'integrale in (1) coincide con l'integrale improprio, ossia la trasformata di Fourier in L^2 coincide con la trasformata di Fourier in L^1 , vista in precedenza. La definizione precedente è pertanto un'estensione del concetto di trasformata di Fourier e, ovviamente, assume rilevanza per quelle funzioni appartenenti a $L^2(\mathbb{R})$ e non a $L^1(\mathbb{R})$, ossia per quelle funzioni per le quali la trasformata in $L^1(\mathbb{R})$ non è definita.

Ciò posto, la proprietà 3) del teorema di Plancherel diviene la formula dell'antitrasformata, formula che, a differenza di quanto accade in L^1 , vale sotto le stesse ipotesi che assicurano l'esistenza della trasformata.

2 Proprietà di simmetria

Dal teorema di Plancherel segue l'importante proprietà della trasformata in L^2 :

Teorema (Proprietà di simmetria) Sia $f \in L^2(\mathbb{R})$ e sia $\mathfrak{F}\{f\} = F(\omega)$ la sua trasformata. Allora $F \in L^2(\mathbb{R})$ e

$$\mathfrak{F}\left\{\mathfrak{F}\left\{f\right\}\right\} = 2\pi f(-\omega).$$

In particolare, se f è inoltre pari, allora la trasformata della trasformata di Fourier di f coincide con f, a meno di un fattore 2π .

Conseguenze:

♦ Poiché la trasformata dell'impulso rettangolare

$$f(t) = \begin{cases} M \text{ se } |t| \le L \\ 0 \text{ altrimenti} \end{cases};$$

è la funzione

$$F(\omega) = 2ML \operatorname{sink}(\omega L),$$

per la proprietà di simmetria, la trasformata di

$$g(t) = 2ML \operatorname{sink}(Lt)$$

è

$$\mathfrak{F}\left\{g(t)\right\} = G(\omega) = \begin{cases} 2\pi M \text{ se } |\omega| \leq L \\ 0 \text{ altrimenti} \end{cases}.$$

Si osservi che tale trasformata non è continua in \mathbb{R} . Infatti $g \notin L^1(\mathbb{R})!$

♦ Poiché la trasformata dell'impulso esponenziale

$$h(t) = \exp(-|t|);$$

è la funzione

$$H(\omega) = \frac{2}{1 + \omega^2},$$

per la proprietà di simmetria, la trasformata di

$$\varphi(t) = \frac{2}{1+t^2}$$

è

$$\mathfrak{F}\left\{\varphi(t)\right\} = \Phi(\omega) = 2\pi \exp(-|\omega|).$$

Si osservi che tale trasformata non è derivabile in $\omega = 0$ (ed infatti $t\varphi(t) \notin L^1(\mathbb{R})$.

3 Altre proprietà della trasformata di Fourier

Sia $f \in L^2(\mathbb{R})$ e sia F la sua trasformata di Fourier. Allora valgono le seguenti proprietà (si ricordi che il caso $f \in L^1(\mathbb{R})$ è stato trattato nelle prime lezioni):

1. Se f è pari, allora F è pari e viceversa.

- 2. Se f è dispari, allora F è dispari e viceversa
- 3. Se f è reale e pari, allora F è reale e pari e viceversa.
- 4. Se f è reale, allora $F(-\omega) = \overline{F(\omega)}$.
- 5. Se F è reale e pari, allora f è reale e pari.

4 La traslazione

Traslazione in frequenza - $Sia\ f \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$. Allora:

$$\mathfrak{F}\left\{f(t)e^{j\gamma t}\right\} = F(\omega - \gamma), \qquad \gamma \in \mathbb{R}.$$

Traslazione temporale - Sia $f \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$. Allora:

$$\mathfrak{F}\left\{f(t-A)\right\} = e^{-jA\omega}F(\omega), \qquad A \in \mathbb{R}.$$

5 Il caso razionale

I seguenti risultati permettono di stabilire quando una funzione razionale f è trasformabile in L^2 secondo Fourier e, analogamente quando una funzione razionale F è una trasformata di Fourier in L^2 .

Teorema 1 Sia R una funzione razionale, ossia

$$R(x) = \frac{N(x)}{D(x)}$$

con N, D polinomi primi tra loro. Allora:

1) $R \in L^2(\mathbb{R})$ se e solo se R è propria e il polinomio D non ha zeri reali, ossia se e solo se

i) gr
$$D - \operatorname{gr} N > 0$$

ii) $D(x) \neq 0 \quad \forall x \in \mathbb{R}.$ (2)

2) $R \in L^1(\mathbb{R})$ se e solo se

$$i) \operatorname{gr} D - \operatorname{gr} N > 1$$

$$ii) D(x) \neq 0 \qquad \forall x \in \mathbb{R}.$$

Dal teorema precedente si ha subito il seguente: Corollario Sia R una funzione razionale, ossia

$$R(x) = \frac{N(x)}{D(x)}$$

con N, D polinomi primi tra loro. Allora:

$$R \in L^1(\mathbb{R}) \Longrightarrow R \in L^2(\mathbb{R}).$$

Per quanto riguarda poi la trasformata di Fourier, vale il seguente risultato:

Teorema 2 Sia F una funzione razionale,

$$F(\omega) = \frac{N(\omega)}{D(\omega)}$$

con N e D polinomi, primi tra loro. Allora F è una trasformata di Fourier se e solo se sono verificate per F le condizioni (2). Inoltre l'antitrasformata di F appartiene sia a $L^1(R)$ che a $L^2(R)$, ossia, indicata con f tale antitrasformata, si ha $f \in L^1(R) \cap L^2(R)$.

Si osservi che la proprietà " $f \in L^2(R)$ " discende dal Teorema di Plancherel visto la lezione scorsa, mentre la proprietà $f \in L^1(R)$ sarà dimostrata nelle prossime lezioni.

Utilizzando poi la teoria delle distribuzioni, vedremo alla conclusione del corso che il Teorema 2 puo' essere generalizzato nel modo seguente:

Teorema 3 Sia F una funzione razionale, ossia

$$F(\omega) = \frac{P(\omega)}{Q(\omega)}$$

con P, Q polinomi primi tra loro e $Q(\omega) \neq 0 \ \forall \omega \in \mathbb{R}$. Allora:

- se gr P < gr Q , allora F è trasformata di Fourier di una $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$

- se gr $P \geq$ grQ,allora F -è trasformata di Fourier nel senso delle distribuzioni.

ESEMPIO 1

Si considerino le funzioni

$$f_1(t) = \frac{5+t}{t-9};$$
 $f_2(t) = \frac{5+t}{t^2+9};$ $f_3(t) = \frac{5+t}{t^2-9};$ $f_4(t) = \frac{5+t}{(t^2+9)^2}.$

Allora f_1 e f_3 non sono trasfomabili secondo Fourier (né in L^1 né in L^2), in quanto il denominatore ha zeri reali e quindi f_1 e f_3 non appartengono né a L^1 né a L^2 . Invece $f_2 \in L^2$ e f_4 appartiene sia in L^2 che in L^1 .Pertanto f_2 ammette trasformata di Fourier in L^2 e f_4 ammette trasf. di Fourier sia in L^1 che in L^2 e, ovviamente, le due trasformate coincidono

ESEMPIO 2

Si considerino le funzioni

$$F_1(\omega) = \frac{5\omega}{\omega - 8}; \quad F_2(\omega) = \frac{5\omega}{\omega^2 + 3\omega};$$
$$F_3(t) = \frac{5\omega}{\omega^2 + 3}; \quad F_4(\omega) = \frac{5\omega^2 + 4}{\omega^2 + 8}.$$

Allora F_1 e F_2 non appartengono a L^2 (il denominatore ha zeri reali) e quindi non sono trasformate di Fourier. Invece $F_3 \in L^2$ e quindi (vedi Teorema 2) la sua antitrasformata appartiene a $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Infine F_4 è trasformata di Fourier nel senso delle distribuzioni (vedi Teorema 3).

6 Calcolo della trasf. (antitrasf.) nel caso razionale

Il calcolo della trasformata (antitrasformata) di Fourier nel caso razionale puo' essere effettuato utilizzando la Teoria dei Residui (vista mercoledi' scorso) e il seguente:

Lemma di Jordan - Sia g una funzione complessa razionale propria, ossia

 $g(s) = \frac{N(s)}{D(s)}$

dove N e D sono polinomi con grado (N) < grado (D). Allora:

$$\lim_{R \to +\infty} \int_{C_R} g(s)e^{jms}ds = 0$$

se:

- i) C_R è una semicirconferenza di centro l'origine e raggio R, contenuta nel semipiano $\operatorname{Im} s > 0$ e m è un numero reale positivo (vedi figura 1); oppure se:
- ii) C_R è una semicirconferenza di centro l'origine e raggio R, contenuta nel semipiano $\operatorname{Im} s < 0$ e m è un numero reale negativo (vedi figura 2).

Tale Lemma, insieme alla teoria dei Residui, consente di calcolare agevolmente integrali del tipo

$$v.p. \int_{-\infty}^{+\infty} \frac{N(u)}{D(u)} e^{ju\omega} du$$

dove N e D sono polinomi con grado D > grado N e $D(u) \neq 0$ per **ogni** u reale. Il procedimento è stato sviluppato dettagliatamente a lezione ed altri esercizi saranno visti nelle prossime lezioni. Qui ricordiamo soltanto i due risultati finali, il primo per la trasformata e il secondo per l'antitrasformata.

Teorema (trasformata) - Sia f razionale, f(t) = N(t)/D(t). Siano i polinomi N, D primi tra loro e siano verificate le condizioni

$$D(t) \neq 0 \quad \forall t \in \mathbb{R}$$
 gr $D - \text{gr } N > 0$

Allora, indicati con $s_1, ... s_N$ gli zeri di D, si ha:

$$\mathfrak{F}\{f\} = F(\omega) = \begin{cases} 2\pi j \sum_{\text{Im } s_i > 0} \text{Res } [f(s)e^{-j\omega s}, s_i] & \text{per } \omega < 0 \\ -2\pi j \sum_{\text{Im } s_i < 0} \text{Res } [f(s)e^{-j\omega s}, s_i] & \text{per } \omega > 0 \end{cases}$$

Tale Teorema si estende immediatamente al caso dell'antitrasformata (con alcune minori modifiche). Vale infatti il seguente:

Teorema (antitrasformata) - Sia F razionale, $F(\omega) = P(\omega)/Q(\omega)$. Siano i polinomi P,Q primi tra loro e siano verificate le condizioni

i) gr
$$P < \text{gr } Q$$

ii) $Q(\omega) \neq 0$ $\forall \omega \in \mathbb{R}$.

Allora, indicati con $s_1, ...s_N$ gli zeri di Q, l'antitrasformata f di F è data da:

$$f(t) = \begin{cases} -j \sum_{\text{Im } s_i < 0} \text{Res } [F(s)e^{jst}, s_i] & \text{per } t < 0 \\ j \sum_{\text{Im } s_i > 0} \text{Res } [F(s)e^{jst}, s_i] & \text{per } t > 0 \end{cases}.$$

dove la scrittura $Res[H, s_i]$ indica il $Residuo\ di\ H\ in\ s_i$.

Esercizio 1.

Calcolare l'antitrasformata di Fourier di

$$F(\omega) = \frac{2j}{\omega^2 + 4}.$$

Poiché F è pari, anche la sua antitrasformata f è pari. Utilizzando il metodo visto in precedenza si ha per t>0

$$f(t) = j \operatorname{Res}[F(s)e^{jst}, 2j]$$

da cui, con facile calcolo,

$$f(t) = \frac{1}{2}je^{-2t} \text{ se } t > 0$$

e quindi

$$f(t) = \frac{1}{2}je^{2t}$$
 se $t < 0$.

Esercizio 2.

Calcolare le trasformate di Fourier di

$$g(t) = \frac{1}{t^2 + 1} e^{5jt}; \quad h_1(t) = \frac{1}{(t+8)^2 + 1};$$
$$h_2(t) = \frac{1}{(t+8)^2 + 1} e^{4jt}.$$

Posto

$$f(t) = \frac{1}{t^2 + 1},$$

la sua trasformata di Fourier è (vedi lezioni scorse)

$$F(\omega) = \pi e^{-|\omega|}. (3)$$

Per esercizio, si calcoli la trasformata di f utilizzando il Teorema 1 precedente, e si verifichi il risultato (3).

Poiché $g(t) = f(t)e^{j5t}$, applicando la traslazione in frequenza si ottiene

$$\mathfrak{F}\{g(t)\} = F(\omega - 5).$$

Poiché $h_1(t) = f(t+8)$, applicando la traslazione temporale si ottiene

$$\mathfrak{F}\{h_1(t)\} = F(\omega)e^{8j\omega}.$$

Infine, avendosi $h_2(t) = h_1(t)e^{j4t}$, applicando la traslazione in frequenza alla trasformata di h_1 si ottiene

$$\mathfrak{F}\{h_2(t)\} = F(\omega - 4)e^{8j(\omega - 4)}$$

7 Derivazione

Ricordiamo il Teorem della derivazione, visto la settimana scorsa.

Teorema (Derivazione) Sia $f \in C^1(\mathbb{R})$ e $f \in L^1(\mathbb{R}), f' \in L^1(\mathbb{R}).$ Allora

$$\mathfrak{F}\left\{f'\right\} = j\omega\mathfrak{F}\left\{f\right\}.$$

Iterando tale risultato, si ha facilmente il seguente:

Corollario Sia $f \in C^N(\mathbb{R})$ e $f \in L^1(\mathbb{R}), f' \in L^1(\mathbb{R}),f^{(N)} \in L^1(\mathbb{R}).$ Allora

$$\mathfrak{F}\left\{f^{(N)}\right\} = (j\omega)^N \mathfrak{F}\left\{f\right\}.$$

In particolare, se $f \in C^2(\mathbb{R})$ e $f \in L^1(\mathbb{R})$, $f' \in L^1(\mathbb{R})$, $f'' \in L^1(\mathbb{R})$, allora

$$\mathfrak{F}\left\{ f^{\,\,\prime\prime}\right\} =-\omega^{2}\mathfrak{F}\left\{ f\right\} .$$

Si osservi che l'ipotesi " $f \in C^1(\mathbb{R})$ " nel precedente Teorema non può essere tralasciata, come mette in luce l'esempio dell'impulso rettangolare.

8 Transformata in L^1

Ricordiamo la formula dell'antitrasformata:

Teorema Sia $f \in L^1(\mathbb{R})$ e sia inoltre f sviluppabile in serie di Fourier in ogni intervallo chiuso [-L, L]. Ciò premesso si ha

$$f(t) = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega.$$
 (4)

Se $F \in L^1(\mathbb{R})$, allora l'integrale in (4) converge non solo nel senso del valore principale, ma anche in senso generalizzato (o improprio). In altre parole, se $F \in L^1(\mathbb{R})$ la formula dell'antitrasformata diviene

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega.$$
 (5)

Se $f \in L^1(\mathbb{R})$ puo' accadere che la sua trasformata $F = \mathfrak{F}\{f\}$ non appartenga a $L^1(\mathbb{R})$, come illustra, ad esempio, il caso dell'impulso rettangolare. Pertanto, come si dice, lo spazio L^1 non è chiuso rispetto all'operatore "trasformata di Fourier".

Condizioni sufficienti affinchè la trasformata appartenga a $L^1(\mathbb{R})$ si ottengono come immediata conseguenza del teorema della derivazione. Si hanno infatti i seguenti:

Corollario Sia $f \in C^n(\mathbb{R}), f.$ $f',, f^{(n)} \in L^1(\mathbb{R})$ allora $F = o(\omega^{-n})$ per $|\omega| \to \infty$, ossia

$$\lim_{|\omega| \to \infty} \frac{F(\omega)}{\omega^{-n}} = 0$$

dove $F = \mathfrak{F}\{f\}$.

Il significato di tale Corollario è il seguente: "la trasformata di Fourier F di una funzione $f \in L^1(\mathbb{R})$ tende a zero (per $|\omega| \to +\infty$) tanto più velocemente, quanto più f è "liscia" (e con derivate in $L^1(\mathbb{R})$)"

Corollario Sia $f \in C^2(\mathbb{R})$, f. f', $f'' \in L^1(\mathbb{R})$; allora $F \in L^1(\mathbb{R})$ (e quindi nella formula della antitrasformata si può omettere la sigla v.p., in quanto, in tal caso, (4) e (5) coincidono.



