APPLICAZIONI di MATEMATICA A.A. 2014-2015

Traccia delle lezioni del 29 settembre e 3 ottobre 2014

October 3, 2014

1 Il concetto di infinito in \mathbb{C}

Nel seguito consideremo l'insieme \mathbb{C} ampliato con l'aggiunta di $\{\infty\}$ (punto all'infinito) e chiameremo intorno di ∞ di raggio R, l'esterno della circonferenza di centro l'origine e raggio R. Tale definizione è giustificata dal fatto che l'insieme dei numeri complessi, ampliato con $\{\infty\}$, puo' essere messo in corrispondenza biunivoca con i punti della superficie di una sfera mediante la nota "proiezione stereografica". Il punto $\{\infty\}$ corrisponde, sulla superficie sferica, al polo e l'intorno di ∞ ad una calotta polare.

Diremo poi che una successione $\{s_n\}$ converge a ∞ se

$$\lim_{n} |s_n| = +\infty.$$

Anche tale definizione può essere giustificata rappresentando $\mathbb{C} \cup \{\infty\}$ sulla superficie di una sfera mediante la proiezione stereografica.

2 Analiticità e funzioni armoniche

Come abbiamo visto nella lezione scorsa, una funzione $h:R^2\to R, h=h(x,y)$ è armonica in un aperto Ω se in tale aperto h soddisfa l'equazione (di Laplace)

$$h_{xx}(x,y) + h_{yy}(x,y) = 0.$$
 (1)

Utilizzando il fatto (che sarà visto in seguito) che una funzione complessa f è analitica in un insieme aperto Ω se e solo se $f \in C^{\infty}(\Omega)$, si ha allora il seguente:

Teorema Sia f analitica in un intorno I di un punto s_0 . Allora le funzioni

$$u = \operatorname{Re} f, \qquad v = \operatorname{Im} f$$

sono funzioni armoniche in tale intorno, ossia in tale intorno verificano le equazioni

$$u_{xx} + u_{yy} = 0$$
$$v_{xx} + v_{yy} = 0.$$

Viceversa sia u = u(x, y) [v = v(x, y)] una funzione armonica in un intorno I di (x_0, y_0) . Allora esiste una funzione analitica f, individuata a meno di una costante reale, tale che Re f = u [Im f = v].

Corollario Una funzione u = u(x,y), definita in un intorno I di un punto (x_0, y_0) è parte reale di una funzione analitica in I se e solo se u è armonica in tale intorno, ossia soddisfa l'equazione (1) in I. Analogamente una funzione v = v(x,y), definita in I è parte immaginaria di una funzione analitica in I se e solo se v è armonica in I, ossia soddisfa l'equazione (1) in I.

Esempi. La funzione u(x,y) = 2xy + y è parte reale di una funzione analitica. La funzione $v(x,y) = x^2 + 4xy$ non è parte immaginaria di una funzione analitica. Analogamente, la funzione $u(x,y) = 2x - 7y^2$ non è parte reale di una funzione analitica.

3 Ricostruzione di una funzione analitica f, assegnata la parte reale u = Re f oppure la parte immaginaria v = Im f.

Utilizzando i risultati precedenti e le formule di Cauchy-Riemann, è possibile determinare tutte le funzioni analitiche aventi una parte reale (o immaginaria) assegnata e armonica.

Procediamo con un esempio. La funzione u(x,y)=6xy-x-2, come è immediato verificare, è armonica. Troviamo dunque le funzioni f tali che Re f=u.

Si ha

$$u_x(x,y) = 6y - 1,$$
 $u_y(x,y) = 6x$

Tenendo conto delle formule di Cauchy-Rieman si ottiene

$$v_y(x,y) = 6y - 1$$
$$v_x(x,y) = -6x$$

Integrando la prima equazione rispetto a y e la seconda rispetto a x si ha rispettivamente

$$v(x, y) = 3y^2 - y + c(x)$$

 $v(x, y) = -3x^2 + d(y)$

dove c=c(x) è una funzione della **sola** x e d=d(y) è una funzione della **sola** y. Allora

$$3y^2 - y + c(x) = -3x^2 + d(y)$$

ossia

$$-3y^2 + y + d(y) = 3x^2 + c(x)$$

Poichè il primo membro dipende solo da y e il secondo soltanto da x, necessariamente entrambi devono essere costanti, ossia esiste una costante reale k tale che

$$-3y^2 + y + d(y) = 3x^2 + c(x) = k.$$

Ne segue $c(x)=-3x^2+k$ e quindi $v(x,y)=3y^2-y+-3x^2+k$. In definitiva si ottiene

$$f(s) = f(x+jy) = u(x,y) + jv(x,y) =$$

$$= [6xy - x - 2] + j[3y^2 - y + -3x^2 + k]$$
(2)

Per determinare l'espressione di f in funzione della variabile s si puo' usare il seguente:

Teorema di Weierstrass (dell'unicità dell'estensione analitica) $Sia \hat{h} : \mathbb{R} \to \mathbb{C}$. Allora esiste al più una estensione di \hat{h} al piano complesso

che risulti analitica, i.e. esiste al più una funzione $h: \mathbb{C} \to \mathbb{C}$ analitica e tale che $h(x) = \widehat{h}(x) \ \forall x \in \mathbb{R}$.

Il teorema di Weierstrass è un risultato di "unicità" e sinteticamente è chiamato "Teorema dell'unicità dell'estensione analitica".

Il (semplice) procedimento è il seguente. Da (2) si ha

$$\widehat{h}(x) = f(x+j0) = -x - 2 - 3x^2j + kj.$$
(3)

Si consideri poi l'estensione a \mathbb{C} della funzione \widehat{h} , ossia si consideri la funzione h ottenuta da (3) sostituendo x con s:

$$h(s) = -s - 2 - 3s^2j + kj. (4)$$

Le funzioni (2) e (4) sono due estensioni **analitiche** della stessa funzione \hat{h} . Allora, per il Teorema di unicità di Weierstrass, tali funzioni devono necessariamente coincidere, e quindi

$$f(s) = -s - 2 - 3s^2j + kj.$$

- Determinare le funzioni analitiche tali che $u(x,y)=3(x^2-y^2)$ [Risposta $f(s)=3s^2+jk$].
- Determinare la funzione analitica f tale che Re f = x + 10xy, f(0) = 0.

4 Curva regolare in \mathbb{C}

Sia [a, b] un intervallo **limitato e chiuso** della retta reale. Una curva regolare è una funzione $\gamma : [a, b] \to \mathbb{C}$

$$\gamma(t) = x(t) + jy(t)$$

dove le funzioni reali x = x(t), y = y(t) sono funzioni derivabili con derivata continua nell'intervallo aperto (a, b) [i.e. $x, y \in C^1(a, b)$] e le due derivate x'(t) e y'(t) non si annullano contemporaneamente in (a, b).

Tale concetto è del tutto analogo a quello visto nell'ambito dei corsi di Analisi Matematica, con la sola differenza che ora esso è formulato usando le notazioni complesse.

Se le due funzioni x, y sono di classe C^1 in tutto (a, b) eccetto un numero finito di punti e/o le due derivate x'(t) e y'(t) si annullano contemporaneamente in un numero finito di punti, allora γ si dice generalmente regolare.

Geometricamente una curva regolare è rappresentata da una "linea" (detta sostegno della curva) avente tangente in ogni punto, salvo, al piu', gli estremi; una curva generalmente regolare è invece rappresentata da una "linea" che ammette tangente in ogni punto eccetto un numero finito di punti.

Esempi. (i) La curva

$$\gamma(t) = \cos t + j\sin t, t \in [0, 2\pi]$$

rappresenta una circonferenza di centro l'origine, raggio 1 e percorsa in senso antiorario (il senso delle "t crescenti"). Ricordando le ben note formule di Eulero $(y \in \mathbb{R})$

$$\cos y = \frac{e^{jy} + e^{-jy}}{2}, \quad \sin y = \frac{e^{jy} - e^{-jy}}{2j}, \tag{5}$$

tale curva si puo' esprimere anche nella forma compatta

$$\gamma(t) = e^{jt}, t \in [0, 2\pi].$$

(ii) La curva

$$\gamma(t) = 6 + 3e^{jt}, t \in [0, 2\pi]$$

rappresenta una circonferenza di centro 6, raggio 3 e percorsa in senso antiorario.

(iii) La curva

$$\gamma(t) = 1 + j + 2e^{jt}, t \in [0, 2\pi]$$

rappresenta una circonferenza di centro 1+j, raggio 2 e percorsa in senso antiorario.

(iv) La curva

$$\gamma(t) = 2e^{jt}, t \in [0, \pi]$$

rappresenta una semicirconferenza di centro l'origine, raggio 2, giacente nel 1^o e 2^o quadrante e percorsa in senso antiorario.

Una curva γ si dice *chiusa* se $\gamma(a) = \gamma(b)$. Una curva γ si dice *semplice* se presi $t_1, t_2 \in (a, b)$ con $t_1 \neq t_2$ risulta $\gamma(t_1) \neq \gamma(t_2)$.

Sia γ una curva regolare o generalmente regolare; si chiama lunghezza di γ il numero reale

$$L_{\gamma} = \int_{a}^{b} |\gamma'(t)| dt = \int_{a}^{b} |x'(t) + jy'(t)| dt = \int_{a}^{b} \sqrt{x'^{2}(t) + y'^{2}(t)} dt.$$

5 Definizione di Integrale in \mathbb{C}

Sia γ una curva regolare o generalmente regolare e sia $f: \mathbb{C} \to \mathbb{C}$ una funzione continua sulla curva. Si chiama integrale di f esteso a γ il numero complesso

$$\int_{\gamma} f(s)ds = \int_{a}^{b} f(\gamma(t))y'(t)dt.$$

Esempi: Calcolare i seguenti integrali:

$$I_{1} = \int_{\gamma_{1}} |s| ds \text{ dove } \gamma_{1}(t) = 4e^{jt}, t \in [0, \pi];$$

$$I_{2} = \int_{\gamma_{2}} |s| ds \text{ dove } \gamma_{2}(t) = 3e^{jt}, t \in [0, 2\pi];$$

$$I_{3} = \int_{\gamma_{3}} \overline{s} ds \text{ dove } \gamma_{3}(t) = e^{jt}, t \in [0, \pi/2];$$

$$I_{4} = \int_{\gamma_{4}} s ds \text{ dove } \gamma_{4}(t) = 2e^{jt}, t \in [0, \pi/2].$$

Si ha $I_1 = -32, I_2 = 0, I_3 = \pi j/2, I_4 = -4.$

"Esercizio" Si ha

$$\int_C \frac{1}{s - s_0} ds = 2\pi j,$$

dove $C(t) = s_0 + re^{jt}$, $t \in [0, 2\pi]$, i.e. C è una circonferenza di centro s_0 , raggio r e percorsa (una sola volta) in senso antiorario (positivo).

6 Proprietà dell'integrale in \mathbb{C}

1. **Linearità** $(c_1, c_2 \text{ costanti complesse})$:

$$\int_{\gamma} [c_1 f_1(s) + c_2 f_2(s)] ds = c_1 \int_{\gamma} f_1(s) ds + c_2 \int_{\gamma} f_2(s) ds$$

2. Ordine:

$$\int_{\gamma} f(s)ds = -\int_{-\gamma} f(s)ds.$$

3. Additività:

$$\int_{\gamma 1 + \gamma 2} f(s)ds = \int_{\gamma 1} f(s)ds + \int_{\gamma 2} f(s)ds$$

4. Modulo dell'integrale: vale la maggiorazione :

$$\left| \int_{\gamma} f(s)ds \right| \le L_{\gamma} \max_{s \in \gamma} |f(s)|$$

dove L_{γ} indica la lunghezza della curva γ .

7 Teoremi di Cauchy per l'integrale

Teorema 1 (di Cauchy) Sia γ una curva regolare (o generalmente regolare) semplice e chiusa e sia f una funzione analitica all'interno di γ e continua su γ . Allora:

$$\int_{\gamma} f(s)ds = 0.$$

Tale Teorema esprime il fatto che, in una regione in cui f è analitica, l'integrale è indipendente dal cammino.

Si osservi che se la funzione integranda non è analitica in TUTTA la regione limitata dalla curva γ , allora l'integrale puo' non essere nullo, come illustra l'esempio visto nelle lezioni scorse $[C(t) = s_0 + re^{jt}, t \in [0, 2\pi], r > 0]$

$$\int_C \frac{1}{s - s_0} ds = 2\pi j. \tag{6}$$

Teorema 2 (di Cauchy) Siano γ_1 e γ_2 due curve regolari (o generalmente regolari) semplici, chiuse, percorse nello stesso senso con γ_1 contenente γ_2 [vedi figura 1]. Sia s_0 un punto interno a γ_2 e sia f analitica all'interno di γ_1 eccetto il punto s_0 . Sia poi f continua su γ_1 . Allora

$$\int_{\gamma_1} f(s)ds = \int_{\gamma_2} f(s)ds.$$

Tale risultato esprime il fatto che l'integrale lungo una curva regolare (o generalmente regolare), semplice e chiusa non cambia se si "deforma con continuità la curva" purchè la funzione considerata sia analitica in tutta la regione compresa tra la curva originaria e la curva "deformata".

Ricordando l'integrale (6), indicando con γ una **qualunque** curva regolare (o generalmente regolare), semplice e chiusa, dai Teoremi 1 e 2 si ha allora

 $\frac{1}{2\pi j} \int_{\gamma} \frac{1}{s-s_0} ds = \begin{cases} 1 & \text{se } s_0 \text{ è interno a } \gamma \\ 0 & \text{se } s_0 \text{ è esterno a } \gamma \end{cases}.$

Teorema 3 (di Cauchy) Siano Γ, γ_1 e γ_2 tre curve regolari (o generalmente regolari) semplici, chiuse, percorse nello stesso senso poste come in figura 2. Siano s_1 e s_2 due punti interni rispettivamente a γ_1 e γ_2 e sia f analitica all'interno di Γ eccetto i punti s_1 e s_2 . Sia poi f continua su Γ . Allora

 $\int_{\Gamma} f(s)ds = \int_{\gamma_1} f(s)ds + \int_{\gamma_2} f(s)ds.$

Il precedente risultato si estende poi immediatamente al caso in cui f sia analitica all'interno di Γ , eccetto un numero finito di punti $s_1, ... s_N$.

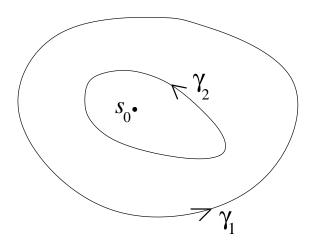


Figura 1

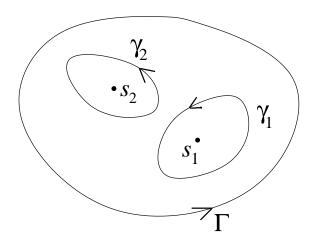


Figura 2

8 Radici in campo complesso e risoluzione di equazioni algebriche.

Determinare le radici n-esime di un dato numero complesso $s_0 \neq 0$ significa risolvere l'equazione $z^n = s_0$. Utilizzando la forma trigonometrica $s_0 = \rho_0(\cos\theta_0 + j\sin\theta_0), z = \rho(\cos\theta + j\sin\theta) (\rho_0, \theta_0 \text{ dati del problema}, \rho, \theta \text{ incognite}), mediante l'utilizzo delle formule di De Moivre si ottiene$

$$\rho^n = \rho_0, \quad n\theta = \theta_0 + 2k\pi, \, k \in \mathbb{Z}.$$

Infatti due numeri complessi coincidono se e solo se hanno uguale modulo e argomento che differisce per multipli di 2π . Essendo ρ_0 reale positivo, la prima equazione ha come unica soluzione $\rho = \sqrt[n]{\rho_0}$ (radice reale). Dalla seconda: $\theta = \theta_0/n + 2k\pi/n$, $k \in \mathbb{Z}$; si osserva che soltanto per $k = 0, 1, \ldots n-1$ risulta $\theta \in [0, 2\pi)$. Pertanto le radici n-esime di s_0 sono date da:

$$\sqrt[n]{s_0} = \sqrt[n]{\rho_0} \left[\cos \left(\frac{\theta_0 + 2k\pi}{n} \right) + j \sin \left(\frac{\theta_0 + 2k\pi}{n} \right) \right], \quad k = 0, 1, \dots, n - 1$$

dove $\rho_0 = |s_0|$, $\theta_0 = \operatorname{Arg}(s_0)$.

Pertanto:

- Le radici distinte sono esattamente n.
- Tali radici hanno tutte lo stesso modulo e quindi si trovano su una medesima circonferenza, di centro l'origine e raggio $\sqrt[n]{\rho_0}$.
- Tali radici sono i vertici di un poligono regolare di n lati, inscritto in tale circonferenza. Quindi tali radici differiscono tra loro per una rotazione di un multiplo di $2\pi/n$.

La radice *n*-esima in \mathbb{C} quindi *non* è una funzione, ma una applicazione a più valori. Ad esempio la radice quadrata in \mathbb{C} restituisce due valori (opposti) $(\sqrt{-4} = \pm 2j)$.

9 Equazioni esponenziali e logaritmo in \mathbb{C}

Sia s_0 un numero complesso, $s_0 \neq 0$. Scrivendo tale numero in forma trigonometrica si ottiene $s_0 = \rho_0(\cos \theta_0 + j \sin \theta_0)$, con $\rho_0 \neq 0$. Ciò posto, si consideri l'equazione

$$e^z = s_0$$
.

Ponendo z = x + jy tale equazione allora diviene:

$$e^{x}(\cos y + j\sin y) = \rho_0(\cos \theta_0 + j\sin \theta_0),$$

da cui

$$x = \log \rho_0, \quad y = \theta_0 + 2k\pi, \quad k \in \mathbb{Z}$$
.

Otteniamo quindi infinite soluzioni date da:

$$z = x + jy = \log|s_0| + j(\text{Arg}(s_0) + 2k\pi), \quad k \in \mathbb{Z}$$
 (7)

Tali soluzioni hanno tutte la stessa parte reale (il logaritmo in \mathbb{R} del modulo di s_0) e differiscono nella parte immaginaria per multipli di 2π . A tale espressione si dà il nome di logaritmo in campo complesso.

Sottolineiamo il fatto che, come nel caso della radice, questa non è una funzione "tradizionale" in \mathbb{C} perchè assume più di un valore (precisamente assume infiniti valori).

Esempi:

1) - Risolvere l'equazione

$$e^{s} = 1.$$

Da (7) si ha

$$s = \log |1| + j(\text{Arg}(1) + 2k\pi) = 2k\pi j, \ k \in \mathbb{Z}$$
.

2) - Risolvere l'equazione

$$e^s = 4j$$
.

Da (7) si ha

$$s = \log|4j| + j(\text{Arg}(4j) + 2k\pi) = \log 4 + j(\frac{\pi}{2} + 2k\pi), \ k \in \mathbb{Z}.$$

3) - Risolvere l'equazione

$$e^{1/(s-1)} = -1.$$

Ponendo

$$z = \frac{1}{s - 1} \tag{8}$$

si ottiene l'equazione

$$e^z = -1$$

Da (7) si ha poi

$$z = \log |-1| + j(Arg(-1) + 2k\pi) = j(\pi + 2k\pi), \ k \in \mathbb{Z}$$

e quindi, in virtù di (8),

$$\frac{1}{s-1} = j(\pi + 2k\pi), \ k \in \mathbb{Z},$$

ossia

$$s = 1 + \frac{1}{j(\pi + 2k\pi)} = 1 - \frac{j}{(1+2k)\pi}, \ k \in \mathbb{Z}.$$