ANALISI MATEMATICA III ELM+TEM A.A. 2014-2015

Traccia delle lezioni del 11 e 13 maggio 2015

May 13, 2015

1 Prodotto di distribuzioni

Ricordiamo che nello spazio L^1_{loc} il prodotto non sempre è definito. Ad esempio la funzione

$$f(t) = \begin{cases} 1/\sqrt{t} & \text{se } t > 0\\ 0 & \text{altrimenti} \end{cases}$$

appartiene a L^1_{loc} , ma $f^2 \notin L^1_{loc}$. Tuttavia se $f \in L^1_{loc}$ e $g \in C^{\infty}(\mathbb{R})$, allora il prodotto f g è, ovviamente, definito e si ha

$$\left\langle f \ g, \varphi \right\rangle = \left\langle f, g \ \varphi \right\rangle, \qquad \forall \varphi \in D.$$

Tale relazione suggerisce la seguente:

Definizione - Sia T una distribuzione e sia $g \in C^{\infty}(\mathbb{R})$. Si chiama distribuzione prodotto T g la distribuzione definita da

$$\left\langle T\ g,\varphi\right\rangle =\left\langle T,g\ \varphi\right\rangle ,\qquad\forall\varphi\in D$$

Nello spazio delle distribuzioni si definisce il prodotto soltanto nel caso precedente, i.e. quando almeno uno dei due fattori è una funzione ("tradizionale") di classe $C^{\infty}(\mathbb{R})$. Pertanto, ad esempio, non si definiscono i simboli $\delta^2(t)$, $e^{-|t|}\delta(t)$, $(\log t)\delta(t)$, $t^{-7}\delta(t)$.

Provare che

$$e^{2t}\delta(t) = \delta(t);$$

$$(t^2 + 4)\delta(t) = 4\delta(t)$$

$$\sin t\delta(t - \frac{\pi}{2}) = \delta(t - \frac{\pi}{2}).$$

ESERCIZI

Verificare che

$$D[(3+5t)\delta'(t-1)] = -5\delta'(t-1) + 8\delta''(t-1)$$
$$(t-1)\delta'(t) = D[(\sin t)\delta'(t) - u(t)]$$
$$tDf = f(t) - 4\delta(t-2)$$

dove f(t) = t[u(t) - u(t-2)].

2 Distribuzioni temperate

Si consideri lo spazio vettoriale S definito da

$$S = \{ \varphi \in C^{\infty}(\mathbb{R}) : t^{j} \varphi^{(k)}(t) \to 0 \text{ per } |t| \to +\infty, \ j, k = 0, 1, 2, \dots \}.$$

Tale spazio si chiama spazio delle funzioni a decrescenza rapida. Infatti una funzione φ appartiene a tale spazio se è infinitamente derivabile e tende a zero (per $t \to \pm \infty$), insieme a tutte le derivate $\varphi^{(i)}$, più velocemente di t^{-n} per ogni n > 0. Ad esempio, la funzione $\varphi(t) = e^{-t^2}$ appartiene a S. Invece la funzione $\varphi(t) = e^{-|t|}$ non appartiene ad S perché, pur tendendo a zero (per $t \to \pm \infty$), insieme a tutte le derivate $\varphi^{(i)}$, più velocemente di t^{-n} per ogni n > 0, non e' derivabile in t = 0. Ricordando la definizione dello spazio D delle funzioni test

$$D = \{ \varphi \in C^{\infty}(\mathbb{R}) \text{ a supporto compatto} \},$$

si ha

$$D \subset S$$
.

E' poi possibile definire in S una nozione di convergenza.

Ciò premesso si consideri lo spazio formato da tutti i funzionali lineari e continui definiti su S. Tale spazio si indica con il simbolo \Im , ossia

$$\Im = \{T : S \to \mathbb{R}, \text{ lineare e continuo}\}\$$

Tenendo conto che

$$D \subset S$$
,

si ha allora

$$\Im \subset \mathfrak{D},$$

ossia \Im è un sottospazio di \mathfrak{D} . Gli elementi di \Im sono quindi particolari distribuzioni, che prendono nome di distribuzioni temperate e il sottospazio \Im si chiama spazio delle distribuzioni temperate.

E' possibile provare che lo spazio delle distribuzioni temperate è strettamente contenuto in \mathfrak{D} . Infatti le funzioni

$$e^{t}$$
, e^{-t} , $\sinh t$, $\cosh t$. $e^{t}u(t)$, $e^{-t}u(-t)$,

pur essendo funzioni in L^1_{loc} , e quindi distribuzioni, ossia elementi di \mathfrak{D} , **non** sono distribuzioni temperate. Pertanto lo spazio delle distribuzioni temperate è un sottospazio proprio dello spazio delle distribuzioni, ossia

$$\Im \subset \mathfrak{D}$$
.

E' possibile provare che sono distribuzioni temperate (i.e. elementi di 3):

- 1. le funzioni $f \in L^p(\mathbb{R})$, $p \ge 1$ (quindi, in particolare, sono distribuzioni temperate tutte le funzioni di $L^1(\mathbb{R})$ e $L^2(\mathbb{R})$);
- 2. le funzioni $f \in L^1_{loc}$ e a crescita lenta, ossia tali che $\exists M,q \geq 0: |f(t)| \leq M(1+|t|^q);$
- 3. le funzioni $f \in L^1_{loc}$ e periodiche;
- 4. le distribuzioni $\delta(t)$, $\delta(t-a)$;
- 5. se $T \in \Im$ allora $DT \in \Im$ (in particolare quindi sono distribuzioni temperate $\delta^{(n)}(t)$, $\delta^{(n)}(t-a)$.

Si osservi che, in virtù di 2., sono distribuzioni temperate le funzioni costanti, i polinomi, le funzioni $\sin t$, $\cos t$.

Esercizio: stabilire quali delle seguenti funzioni in L^1_{loc} sono distribuzioni temperate

$$f_1(t) = e^t u(t);$$
 $f_2(t) = e^{-t} u(t)$
 $f_3(t) = e^t u(-t):$ $f_4(t) = e^{-t} u(-t).$

Esercizio: Le funzioni a crescita lenta sono distribuzioni temperate, ma esistono anche distribuzioni temperate la cui crescita non e' "lenta", in senso stretto. Ad esempio si provi che la funzione di L^1_{loc}

$$f(t) = e^t \cos(e^t)$$

è una distribuzione temperata. Suggerimento: si osservi che f è la derivata della funzione a crescita lenta $g(t) = \sin(e^t)$

3 Trasformata di Fourier di distribuzioni

Sia $\varphi \in S$. Essendo φ a decrescenza rapida, si ha $\varphi \in L^1(\mathbb{R})$ e quindi φ ammette trasformata di Fourier. Sia pertanto Φ la sua trasformata, ossia $\Phi(\omega) = \mathcal{F}\{\varphi\}$. Usando le proprietà della trasformata di Fourier in L^1 , è possibile provare che "lo spazio S è chiuso rispetto all'operatore trasformata di Fourier", ossia che vale il seguente:

Lemma - Sia $\varphi \in S$. Allora $\varphi \in L^1(\mathbb{R})$ e, indicata con Φ la sua trasformata di Fourier, si ha $\Phi \in S$.

Si ha poi il seguente:

Teorema - Sia $f \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$ e sia F la sua trasformata di Fourier, ossia $F(\omega) = \mathcal{F}\{f\}$. Allora

$$\int_{-\infty}^{+\infty} F(\omega)\varphi(\omega)d\omega = \int_{-\infty}^{+\infty} f(\omega)\Phi(\omega)d\omega, \ \forall \varphi \in S$$

ossia

$$\langle F, \varphi \rangle = \langle f, \Phi \rangle, \ \forall \varphi \in S$$

o, equivalentemente,

$$\langle \mathcal{F} \{f\}, \varphi \rangle = \langle f, \mathcal{F} \{\varphi\} \rangle, \ \forall \varphi \in S.$$

Tale Teorema suggerisce la seguente:

Definizione - Sia T una distribuzione temperata; si chiama trasformata di Fourier di T (nel senso delle distribuzioni) e si indica con $\mathcal{F}_D\{T\}$, la distribuzione temperata definita da

$$\langle \mathcal{F}_D \{T\}, \varphi \rangle =_{\text{def}} \langle T, \mathcal{F} \{\varphi\} \rangle, \ \forall \varphi \in S.$$

Tale definizione riconduce quindi il calcolo della trasformata \mathcal{F}_D a quello della trasformata "classica" \mathcal{F} (i.e. in L^1 o L^2).

Dal Teorema precedente si ha poi la seguente proprietà

• Se $f \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$ allora $\mathcal{F}_D\{f\} \equiv \mathcal{F}\{f\}$, ossia se $f \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$ allora la trasformata nel senso delle distribuzioni di f coincide con quella "classica".

La definizione precedente acquista quindi significato per gli elementi che **non** appartengono a $L^1(\mathbb{R}) \cup L^2(\mathbb{R})$.

4 Trasformata di Fourier di distribuzioni temperate "elementari"

La seguente tabella, provata a lezione, fornisce la trasformata di Fourier, nel senso delle distribuzioni, di alcune funzioni" elementari" a crescita lenta $(A \in \mathbb{R})$:

funzione
$$\rightarrow$$
 trasformata
1 $2\pi\delta(\omega)$
t $2\pi j\delta'(\omega)$
 t^n $2\pi j^n\delta^{(n)}(\omega)$
 e^{jAt} $2\pi\delta(\omega-A), A\in\mathbb{R}$
 $\sin(At)$ $\pi j[\delta(\omega+A)-\delta(\omega-A)], A\in\mathbb{R}$
 $\cos(At)$ $\pi[\delta(\omega+A)+\delta(\omega-A)], A\in\mathbb{R}$

Per la distribuzione $\delta(t)$ si ha poi

$$\mathcal{F}_D \{\delta(t)\} = 1$$

$$\mathcal{F}_D \{\delta(t-a)\} = e^{-ja\omega}, \ a \in \mathbb{R}.$$

Vale infine la proprietà

Se
$$T$$
 è una distr. temperata, allora
$$\mathcal{F}_{D} \{DT\} = j\omega \mathcal{F}_{D} \{T\}. \tag{1}$$

Esercizio: Utilizzando i crochets, provare (1).

Esercizio: Calcolare la Trasformata di Fourier delle distribuzioni

$$T_1 = \sin(t+1)\delta(t); \ T_2 = t\delta'(t-1); \ T_3 = D(e^{t-3}\delta(t));$$

$$T_4 = D(e^t\delta(t-3)); \ T_5 = e^{t-3}\delta'(t); T_6 = e^{5t}\delta'(t-1) + \delta'(t-2).$$