IMIULTIPLE SOLUTIOWN

FOR
ELLIPTIC PROBLEWS

GABRIELE BONANNO
UNIVERSITY OF MESSINA, ITALY

FIRENZE. December 2-3. 2016



Archive for Rational Mechanics and Analysis

14. Xl. 1974, Volume 55, Issue 3, pp 207-213

On the Number of Solutions
of Asymptotically Superlinear Two Point
Boundary Value Problems

HERBERT AMANN

Communicated by J. SERRIN


http://link.springer.com/journal/205
http://link.springer.com/journal/205/55/3/page/1

Archive for Rational Mechanics and Analysis

30. IX. 1975, Volume 58, Issue 3, pp 207-218

Some Continuation and Variational Methods
for Positive Solutions of Nonlinear Elliptic
Eigenvalue Problems

MicHAEL G. CranpaLL & PaurL H. RaBinowiTZ

Communicated by J. SERRIN


http://link.springer.com/journal/205
http://link.springer.com/journal/205/58/3/page/1

JOURNAL OF FUNCTIONAL ANALYSIS 122, 519-543 (1994)

Combined Effects of Concave and Convex
Nonlinearities in Some Elliptic Problems*

ANTONIO AMBROSETTI

Scuola Normale Superiore, 56100 Pisa, Italy

HAamM BREZzZIS

Université Paris VI, place Jussieu, 75252 Paris, France; and
Rutgers University, New Brunswick, New Jersey 08903

AND

GI1OVANNA CERAMI

Universita di Palermo, 90100 Palermo, Italy



—u" = \f(u) in [0, 1]

(P
w(0) =u(l) =0

f IR — IR is a continuous and nonnegative function

such that £(0) > 0: o
t
lim fg) = +00. <D

Then, there is X > 0 such that the problem (Py)

has at least two positive solutions for 0 < X < \;

at least one for X = \; none for A\ > \.
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CRANDALL-RABINOWITZ

[ —Au = \f(u) in
(Px) 4

u=~0 on )

\

f IR — IR s a continuous, nonnegative and sub-critical

function such that
f(0) > 0; 1

m>2 1>0 0<mF(&) <Ef(E) foral g =1 @

Then, there is X > 0 such that the problem (Py)

has at least two positive solutions for 0 < X < \;

at least one for X = \; none for A\ > \.



The (AR) condition
m>2 1>0 0<mF() <Ef(€) forall =1

IS a bit more strong than

t
lim U0) = +00 q>1 <D

t—+oo 14

that is, f IS more than superlinear at infinity.

The condition f(0)>0 implies

13
limy—koo 0

t—0+

that is, f IS sublinear at zero.



Condition @@ can be true even if f(0)=0, while if f(0)>0
then O is not a solution of the problem.

So, roughly speaking, Theorem of Amann ensures two
positive solutions If

f 1s more than sublinear at zero

and it is superlinear at infinity,

while Theorem of Crandall-Rabinowitz ensures two positive
solutions if

f 1s more than sublinear at zero

and It 1Is more than superlinear at infinity.

In both cases O is not a solution of the problem.
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AMBROSETTI-BREZIS:CERAMI

P ([ —Au = pu® + ul imn )
B

u=>0 on  Jf)

where 0<s<1<qg, with g subcritical (or critical).

Then, there is A> 0 such that the problem (F,)

has at least two positive solutions for () < < A;
at least one for j = A: none for |t > \.



In this case

f(u)= pu® 4 ud

for which
0 Is a solution of the problem
lim @ — 400 that is, f Is sublinear at zero
t—0+
lim @ = 400, g>1 that 1s, f 1S more than
t—+4oo 4 ’

superlinear at infinity



The aim of this talk is to present an existence result of two

positive solutions for the previous problems by requiring,
besides the (AR) condition, a condition which is more general
than the sublinearity at zero. Precisely, in the ordinary case,

We require:
there are two positive constants v, 0, with 0 < ~ such that
F(y) 1F(9)
~2 < 4 52 0

Function F is the primitive of f. So, In particular,




In addition, it may be satisfied also in some case where the
functions f are superlinear (or linear) at zero.

A similar situation one has for elliptic case. In this case
such a condition is a bit less simple.

The basic ingredients of such a result are:
a theorem of local minimum
and
the Ambrosetti-Rabinowitz theorem.



PASS THEOREM
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ST@R ICAL NOTES

Let X be a real Banach space, I : X = IR a continuously
Gateauz differentiable function which verifies (PS).
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THE AMBROSETTI-RABINOWITZ THE@REM —

ssume that

(G) there are ug,uy € X and r € IR, with
0 <r < ||[uy —ugl|, such that

inf  I(u) > max{/(up), [(uy)}.

[u—uol|=r

Then, I admaits a critical value ¢ characterized by

c = inf max I(vy(t))

vel te[0.1]
where

[={ve C(0,1], X) : v(0) = up;y(1) = uy }.
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THE ?@_@@H-@ERRHN THEOREM

G') there are ug,u; € X and r, R € IR, with
0 <r < R<||luy —up|l, such that

inf  I(u) > max{I(ug). I(uy)}.

r<||lu—up||<R :

Corollary. If I admits two local minima, then [

admits a third critical point.
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THE @M@USS@UI PREISS*THEOREM

(MG) there are ug,uy € X and r € IR, with
0 <r < ||luy —ugl|, such that

inf  I(u) > max{/l(uy).I(uy)}.

[u—wuo|=r



Some remarks on the classical Ambrosetti-
Rabinowitz theorem are presented. In
particular, it 1s observed that the
geometry of the mountain pass, if the
function 1s bounded from below, 1is
equivalent to the existence of at least two
local minmima, while, when the function is
unbounded from below, it is equivalent to
the existence of at least one local
minimum.



So, the Ambrosetti-Rabinowitz theorem
actually ensures three or two distinct
critical points, according to the function is
bounded from below or not.



e =N REMARK ON

THE MOUNTAIN PASS GEOMETRY

Theorem. Let X be a real Banach space, [ - X — IR a
continuously Gateaux differentiable function which verifies

(PS) and it _is bounded from below. Then, the following

assertions are equivalent:

(MG) there are ug,uy € X andr € IR,
with 0 < r < ||uy — ||, such that

inf  I(u) > max{I(ug). [(u)};

lu—uo||=r

(L) I admits at least two distinct local minima.



e Zé\ REMARK ON

THE MOUNTAIN PASS GEOMETRY

 So, the Ambrosetti-Rabinowitz theorem,

when the function is bounded from below

actually ensures three distinct critical
points.

* In fact, in this case the mountain pass
geometry implies the existence of two
local minima and the Pucci-Serrin
theorem ensures the third critical point.



— w»A REMARK ON

THE MOUNTAIN PASS GEOMETRY

» In a similar way it is possible to see that,
when the function is unbounded from
below, the mountain pass geometry 1is
equivalent to the existence of at least one
local minimum.

In this case, the following condition is
requested.:

The function I is bounded from below
on every bounded set of X.



===\ REMARK ON

THE MOUNTAIN PASS GEOMETRY

WI@& X be a real Banach space and I : X — IR

be a functional of class C' satisfying the (PS)—condition
and the mountain pass geometry (MG). Assume that I is
bounded from below on every bounded set of X. Then, 1
admits two or three distinct critical points according to
whether it 1s unbounded from below or not.

BONANNO G., A characterization of the mountain pass geometry for functionals bounded from below, Differential and
Integral Equations 25 (2012), 1135-1142.
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A LOCAL MINIMUM THEOREM

Our aim 1s to present a local minimum
theorem for functionals of the type:

O-Y



It IS an existence theorem of a critical point
for continuously Gateaux differentiable
functions, possibly unbounded from below.
The approach 1Is based on FEkeland’s
Variational Principle applied to a non-
smooth variational framework by using also
a novel type of Palais-Smale condition which
IS more general than the classical one.

BONANNO G., A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, 75 (2012), 2992-3007.

BONANNO G., Relations between the mountain pass theorem and local minima, Advances in Nonlinear Analysis, 1 (2012),
205-220.
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A LOCAL MINIMUM THEOREM

Let X be a real Banach space and ®. WV : X — IR two
continuously Gateauz differentiable functions. Put

[ =] —

and assume that there are ro € X and r1.19 € IR, with
r1 < ®(xg) < ro, such that

sup U(u) < 19— P(xp) + W(x0), ‘E’

ued—1(]ry,r2[)

sup U(u) <1y — D(xg) + U(xp). ‘E’

uE(I-‘_l(]—CO,T‘i]]

Moreover, assume that I satisfies "] 2] _condition.
Then, there is ug € ®1(]ry.r < I(u)
for all u € @71 (|ry. o
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A LOCAL MINIMUM THEOREM

Three consequences

et X be a real Banach space and &, ¥ : X — R two
continuously Gateaux differentiable functions with

¢ bounded from below and ®(0) = ¥(0) =0. Fizr =0
such that SUp,eg—1(_wo ) ¥ < +00 and assume that,

r

for each A € |0,

Then, for each X\

Sup
ucd1(]—oo,r[)

L, =®— A‘I'_mtisﬁgfs (FS)["]—mndi_tiﬂn. ]

0,

W(u)

r

, the functional

Sup
uEd—!(]—oo.r))

W(u)

, there is

uy € d1(] — oo, r[) such that I,(uy) < I\(u) for all
uc ] —oo,r[) and I} (u;) = 0.
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A LOCAL MINIMUM THEOREM

be a real Banach spa a :
e two continuously Gateaux differentiable functmn& Fizx
infy & < r < sup, ¢ and assume that

p(r) =0,
U(v) — sup W)
ue®—1{]—oc,r])
where p(r) = sup =P | and
) vea=!(roch B(v) — 7
for each A > —— the function I, = & — AW is
p(r)

bounded from below and satisfies 'l (PS)-condition.

Then, for each A = % there is ug € ®~1(]r, +00l)
p(r

such that Iy(us) < Iy(u) for all u € 7 (|r, +o00|)

and I3 (1) = 0.



Three consequences

1\-\\\‘(\ p—

Let X be a real Banach space and lef &, 0 : X — IR be
two continuously Gateaur differentiable functmnais such
that infx ® = ®(0) = ¥ (0) = 0. Assume that there are
relR and o e X, with 0 < ®(u) < r, such that

sup I

ued—1(]—co.r[) (1)
r = ()
D) r { .
and, for each X ] T ()’ — T(w) | the functional
ue®—1(]—oc,r[)

I, = ® — A\ satisfies (PS)"-condition.

D (L) T .
Then, for each A ] T(a)’ i T () [, there is
ue®—1(]—oo.r[)

ug € ()0, r[) (hence, ug # 0) such that I(ug) < I, (u)
for all u € ®~1(]0, r[) and I} (ug) = 0.




We have seen that the mountain pass theorem is actually a theorem of
multiplicity. In the sense that

1. If the functional is bounded from below, then we have at least three
critical points;

2. If the functional 1s unbounded from below, then we have at least two
critical points.

Indeed, in such a theorem, one of the key assumptions, that is, the
mountain pass geometry is equivalent to the existence of local minima.

Thus, by combining the mountain pass theorem with the local minimum
theorem, we get multiple solutions.

. The Local MULTIPLE
The Mountain e T g e CRITICAL
Pass Theorem ST - POINTS




To be precise, from the mountain pass theorem we obtain the following
multiple critical points results:

A Three Critical Points Theorem

by using the first and the second consequence of the local minimum
theorem;

A Two Critical Points Theorem
by using the first consequence of the local minimum theorem;

A Two Nonzero Critical Points Theorem
by using the third consequence of the local minimum theorem.



Clearly, since such results are obtained from the mountain pass theorem
can happen that in the applications we get results already well-
known or results that can be directly obtained by the mountain pass
theorem and classical techniques. This can often happen, for
Instance, in the case of two critical points theorems. While, the
situation is different in the cases of three critical points theorem and
two nonzero critical points theorem.

Now, we give the statements of such moltiple critical points.
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A THREE@RUTU@‘AL POINTS THEOREM
Let X be a real Banach space and .,V : X — IR two

continuously Gateaux differentiable functionals with

O bounded from below. Assume that &(0) = W (0) = 0
and there are r > 0 and T € X, with r < ®(T), such that

sup W () ()

ue®—1(]—oo,r]) X
< .

i GO
Further assume that, for each
D (7T) r
AeE N = .
< ] ()" sup  W(u) [

ued—1(]—oo,r
the functional I, = & — AWV s bougded ?’r‘om below and
satisfies (PS)-condition.
Then, for each A\ € A the functional I\ admaits at least
three critical points.



AN EASY EXANMPLE

Consider the following two point boundary value
problem

—u” = Af(u) in [0,1]
(P}\) { ’U!-(O) — fu,(l) — O;

where f : R — R Is a continuous function and A
IS a positive real parameter. Put

F(O) = [ 1)

for all £ €R and assume, for clarity, that f is
nonnegative.
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A THREE@RHTH@‘AL POINTS THEOREM
AN EASY EXAMPLE

Theorem. Assume that
there are two positive constants ¢ and d, with ¢ < d,
< -

such that
2 4 d?

and there are two positive constants a and s, with s < 2,
such that

F(e) 1F(d)

F&) <al+¢) veeR @GP
e 2

Fd) QF(C) [)., problem (P )

admaits at least three (nonneqative) classical solutions.

Then, for each \ € |8




Two-point boundary value problems
Neumann boundary value problems
Mixed boundary value problems
Sturm-Liouville boundary value problems
Hamiltonian Systems

Fourth-order elastic beam equations
Boundary value problems on the half-line
Nonlinear diffence problems

Impulsive equations

Fractional equations

Impulsive fractional equations
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A THREE\@RHTHC@AL POINTS THEOREM

« Elliptic Dirichlet problems involving the p-lapacian with p>n
 Elliptic Neumann problems involving the p-laplacian with p >n
« Mixed elliptic problems involving the p-laplacian with p >n

« Elliptic Systems

« Elliptic Dirichlet problems

 Elliptic Neumann problems
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THREE CRITICAL POINTS THEOREMS
Papers based on the PUCCI-SERRIN THEOREM

* RICCERI B., On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220-226.

* BONANNO G., Some remarks on a three critical points theorem, Nonlinear Analysis 54 (2003), 651-665.
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«  BONANNO G., MOTREANU D., WINKERT P., Variational-hemivariational inequalities with small perturbations
of nonhomogeneous Neumann boundary conditions, Journal of Mathematical Analysis and Application, 381 (2011), 627-
637.

«  BONANNO G., WINKERT P., Multiplicity results to a class of variational-hemivariational inequalities, Topological
Methods in Nonlinear Analysis, 43 n.2 (2014), 493-516.

«  BONANNO G., MOTREANU D., WINKERT P., Boundary value problems with nonsmooth potential, constraints
and parameters, Dynamic Systems and Applications 22 (2013), 385-396.



AN EXAMPLE IN-NON-SMOOTH CASES

—(p(x)u') +q(r)u € AF(u) in (a.b) (1.1
u(a) =u'(b) = 0.

Theorem 1.1. Let F : R — 2% be w.s.c. with compact convex values, and o« > 0, s € (1,2),
0<e<d s.t.

(i) 0 < min F(t) < a(l + [t|*7) for all t € R;
I K [ -
i) —2/ min I'(t) dt < E_/ min F(t) dt, with K = 3po(12||p||~ + 4(b — a)?||q| =) !
cJo 0

Moreover, set

2 ~1 ~1
A= ( pﬂd f min F'(¢ dt : ;ch / min F( t)dt) )
—a)?

Then, for all A € A problem (1. ) has at least three solutions.

BONANNO G.. IANNIZZOTTO A.. MARRAS M.. On ordinary differential inclusions with mixed boundary
conditions, Differential and Integral Equations, to appear.



BONANNO G., LIVREA R., MAWHIN J., Existence results for parametric boundary value problems involving the mean
curvature operator, Nonlinear Differential Equations and Applications NoDEA, 22 (2015), 411-426.

BARLETTA G., BONANNO G., O’'REGAN D., A variational approach to multiplicity results for boundary value problems
on the real line, Proceedings of the Royal Society of Edinburgh, Section A, 140 (2015), 13-29.

BONANNO G., RODRIGUEZ-LOPEZ R., TERSIAN S., Existence of solutions to boundary value problem for impulsive
fractional equations, Fractional Calculus and Applied Analysis, 17 n.3 (2014), 717-744.

BONANNO G., CANDITO P.,, MOTREANU D., A coincidence point theorem for sequentially continuous mappings,
Journal of Mathematical Analysis and Application, 435 (2016), 606-615.

BONANNO G., D’AGUI’ G., PAPAGEORGIOU N.S., Infinitely many solutions for mixed elliptic problems involving the p-
Laplacian, Advanced in Nonlinear Studies 15 (2015), 939-950.

BONANNO G., O’'REGAN D., VETRO F., Sequences of distinct solutions for boundary value problems on the real line,
Journal of Nonlinear and Convex Analysis, 17 n.2 (2016), 365-375.

BONANNO G., CHINNI" A., TERSIAN S., Existence results for a two point boundary value problem involving a
fourth-order equation, Electronic Journal of Qualitative Theory of Differential Equations, 2015, n.33 (2015), 1-9.

BONANNO G., DI BELLA B., HENDERSON J., Infinitely many solutions for a boundary value problem with impulsive
effects, Boundary Value Problems n.278 2013 (2013), 1-14.

BONANNO G., TORNATORE E., Existence and multiplicity of solutions for nonlinear elliptic Dirichlet systems, Electronic
Journal of Differential Equations, 2012 n.183 (2012), 1-11.
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ITICAL POINTS THEOREM

ATW@@

Theorem.  Let X be a real Banach space and let ®, WV : X — R be two contin-
wously Gateaux differentiable functionals such that @ is bounded from below and
®(0) = W(0) = 0. Fix r > 0 such that sup, cp—1(—co,) V() < +00 and as-
sume that, for each

A€ |0, L .
] SUPyed—1(J—oc.rD W(u) [

the functional I; = ® — AW satisfies the (PS)-condition and it is unbounded from

below. Then, for each

A € |0, r .
] SUPyed—1(]—ec.rD W(u) [

the functional I admits two distinct critical points.
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A TWO CRITICAL POINTS THEOREM

Theorem. Let f: IR — IR be a nonnegative, sub-critical
continuous function.

Assume that

0 < pF(t) < tf(t) L AR

for all t > r, for some r > 0 and for some p > 2.

Then, there exists \* > 0 such that for each \ € |0, \*[,
the problem

(P) ¢

[ —Au = \f(u) in

u=>0 on  Jf)

\

admaits at least two weak solutions.
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RITICAL POINTS THEOREM

A TWO C
If In addition we assume that
lim @ = ()
t—0t+

(hence f(0)=0, for which the problem admits the zero solution. Moreover,
In this case, one has )\ =+x )

we obtain the same result of Ambrosetti and Rabinowitz.

If, on the contrary, we assume
f(0)>0

(that is, f(0) # 0, for which the problem does not admit the zero
solution. )

we obtain a result of type Crandall and Rabinowitz.
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A TWO N@NZER@ CRITICAL POINTS THE@RE

Theorem Let X be a real Banach space and let ®, W : X — IR be two con-
tinuously Gateauzr differentiable functionals such that infx & = ®(0) = ¥(0) = 0.
Assume that there are r € IR and u € X, with 0 < ®(u) < r, such that

sup  U(u)

ue®—1(]—o0,r]) @(ﬂ)
e i 52

O (u) r [
() sup  W(u)l
HEQ’_I(]_QD:T]}
(PS)-condition and it is unbounded from below.

O (u) r [
Th h A
en, for each \ € (i) - (u) |
uE(I?_l{]—co,r])
non-zero critical points uy 1, uxz such that I(uy1) < 0 < Iy(uy2).

and, for each A\ € ] the functional Iy, = ® — AV satisfies

the functional Iy admaits at least two



BONANNO G., D’AGUTI’ G., Two non-zero solutions for elliptic Dirichlet problems,
Zeitschrift fur Analysis und ihre Anwendungen , 35 n.4 (2016), 449-464.

/_N LEVEL K>0

U1

Uo
local mintimiim

11 such that (1) <l(tio)
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A TWO NONZERO CRITICAL POINTS THEORENM™
Remark 2.1. In Theorem 2.1, we can assume the Cerami condition or (C')—condition

as mtroduced by Cerami instead of ( PS)—condition, provided that the coerciv-
ity of @ 1s assumed. The (C')—condition is slightly weaker than (PS)—condition

e =

e —

Consider the problem —Au= \ f (fu_.) 1n ()

(P\)
u =0 on  Jf)

where f : IR — IR 1s a function which 1s nonnegative and continuous in [0, 400/

Assume that

(h) there exist s € (1,2, ¢ € |2,2N /(N —2)| and two positive constants as, a,
such that

F(t) < aglt] ™" + ag|t)*™
for allt > 0.
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A TWO N@NZER@ CRITICAL POINTS THE@REM
Morcover, put R(z) = sup{d : B(z,d) C Q} for all z € Q, and R = sup,_ R(x), for
which there exists zg € (2 such that B(xzg, R) C €. Finally, put

R 1
S22V — 1220w

and

11 \ 1 1
KorQF FO) 7 ar2|o)f 2q0 2 + 2qa2

where 7,0 are positive constants.

—
]

S NI\
= \/N(N — )7 (ZF(I + N/Q))

lull 2= @) < Tllull  Yu € Hy(Q)
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A TWO N@NZER@ CRITICAL POINTS THE@REM

Theorem 3.1. Assume that (h) holds. Moreover, assume that there are two positive
constants v and o, with O < =, such that

F(o)

s s—2 “q

. + — . 2 < RV (3.1)
and there are two constants m > 2 and [ > 0 such that, for all £ > [, one has
0 <mF(§) <Ef(E). (AR)

Then, for each \ €|=5, A,|, problem (PA ) admits at least two positive weak solutions.
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A TWO N@NZER@ CRITICAL POINTS THE@REM"

Corollary 3.1. Assume (h),

F
lim sup (;S) = 400 (3.17)
esot &

and (AR).
Then, for each A €]0, \*, problem (P\) admits at least two positive weak solutions.



- e

s e =
S R

S
R

A TWO N@NZE@@ CRITICAL POINTS THE@RE;M'
Example 3.1. Let Q = {z € R? : |2| < 1} and let f: IR — IR be a function defined

as follows

(0P it t< (4)
=y Vi it (&) <t<1
t2if t>1

Owing to previous theorem, the problem

{ —Au=f(u) in €

ulﬁﬂ — U:'

admits at least two [positive weak solutions.

t*  superlinear at + oo

(5032 Vi

Superlinear at 0
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A TWO N@NZE@@ CRITICAL POINTS THE@RE}M'

as follows
( 2
(50)t if tg(% ,
W=y vi i (&) <t<1
2 if t>1.

Owing to previous theorem, the problem

{—Au:fw)in Q,

ulﬁﬂ — U:'

admits at least two positive weak solutions.

j Superlinear at + o
(50)t ﬁ

Linear at O
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A TWO NONZERO CRITICAL POINTS THE@REM}‘
Example 3.2. Owing to Corollary 3.1, for eau:h/\E‘[]

{ the problem
4772|Q \

{ —Au = Amax{/u,u?} in €,

upn =0,

admits at least two positive weak solutions. Moreover, mn particular,

if @ ={z £ IR?: |z| < 1}, the problem { _lﬂu :émfﬂi{\/ﬂ& W} i Q.
Ulpn = Y,

Lol ko

admits at least two positive weak solutions, since 5 < \* = fﬁ 3 ( ) :

2] =

J t?  Superlinear at + oo

il

Sublinear at O
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A TWO NONZERO CRITICAL POINTS THEOREN

We recall that in the Crandall-Rabinowitz theorem,
besides (AR) condition, the key assumption is

Hence, the Crandall-Rabinowitz theorem cannot
applied to none of previous examples since, there, one
has f(0)=0.
Moreover, we also observe that

f(0)>0 mmmp fsublinearat0”
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1
1 g—2 2_s (2 . S){Q—S))q——?
t = s(qg— 2)qa2
! (2-T2|ﬂ\%) a2 ((q )@

Corollary 3.2. Fiz 1 < s < 2 < g < 2*. Then, for each p €|0, i*[ problem

—Au=pu~t 4wt in Q
D) { 2

admats at least two positive weak solutions.

Indeed, it is enough to observe that

§ 1 s\ 2 (2—s)\T q—2
A= pl (_) (g)e— ( ; ) >1
2720~ \ q—2 q—S

So, from our result applied to —Aw =) (uus—t + w2-11) We obtain the
conclusion.
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Remark 3.3. Corollary 3.2 1s a particular case of the very nice result established
in the fundamental and seminal work [3] by a clever combination of topological and
variational methods. Precisely, in [3] the existence of a first positive solution, by
using the method of sub- and super-solutions. 1s established and then, through a
deep reasoning. by proving that this first solution 1s the mmimum of a suitable
functional associated to a modified problem, the mountain pass theorem 1s applied
in order to obtain a second positive solution. However, in this type of proof, no
numerical estimate of the superior, called A, of parameters p for which the problem
(D) admits such solutions is provided. We observe that our proof of Corollary 3.2
1s totally variational. Indeed, the first positive solution 1s directly obtained as a local
minimum and the second one 1s obtained by applying the mountain pass theorem but
without modifying the functional i order to establish the positivity of the second
solution. In addition. we observe that the same proof of Corollarv 3.2 gives precise
numerical values ;o for which (D)) 1s solved |



x:-j =

We observe that our results and the Ambosetti-Brezis-Cerami as well as
Crandall-Rabinowitz are mutually independent. Indeed, on the hand, we
can apply our results to problems where ABC and CR cannot be applied,
as seen In the previous examples. On the other hand, when we can apply
both ABC and our results, the value 4 obtained in ABC, even if given in a
theorical form, is the best. So, in this latest case we can use our results
as a complement to ABC in order to give a numerical lower bound of 4,

that is,

U< A.

The same remark also for CR holds.
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We observe that, as in recent results, we can use a condition which is a
bit more general than the (AR)-condition, by using the (C)-condition

Instead of (PS)-condition. To be precise, we can assume in our theorem,
the following conditions

(by) lim F()

=)
t—4oo 2 '

— 2)N 2N
min { (4 5 ) _._.9} ._ ﬁ{ and o > 0 such that

lim inf tf(t) — 2K () > 0;
t——+o0 17

(be) there exist T €

Instead of the (AR)-condition. So, our theorem can be stisfied by

functions which are only superlinear at + <o, as for iInstance, the
following function:



- m.-.’)

( 2

(50)¢ if t< (25—10) ,
Flt) = < 1‘\/% if (5—10) <t<1.
log(1 + 1) if t>1

| log 2
Such a function is linear at 0 and only superlinear at + oo.

In any case, the condition (b) does not exhaust the entire class of
functions which are superlinear at infinity. For example, the following
function

f(t) = t3(sint + 2)

does not satisfy neither the (bz)-condition nor the (AR)-condition.
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ORDINARY CASE

Previous results also for the ordinary case holds true. However, in this
case we can obtain the following more precise resulit.

Theorem 3.2. Let f : [0, +o00|— [0, +00| be a continuous function and assume that

(AR) holds. Moreover, assume that there are two positive constants v, 0, with 6 < v
such that

F(v) _1F(9) "
2 < 152 (3.17)
8(52 QTE [
Then, for each \ € , . the problem
] F(0) F(7)
—u" = Af(u) in |0, 1], f
{ u(0) =u(l) =0, (Py)

admits at least two positive classical solutions.
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F(9)
A2

If im sup = +o0 then (3.1”) holds true

d—0T

and in this case the interval becames }U, )‘[: where

X — sup 21

— su .
':r‘}lg F(v)

So, in particular, our result holds by assuming, besides the (AR) — condition, the

following condition

1
lim M = +00.
t—0+ ¢
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Example 3.3. Let f : IR — IR be the function defined as follows
t2 if t<1.
flt)y =14 t if 1<t<10%
ottt > 10%
Owing to Theorem 3.2, the problem

(oo w

u(0) =wu(l) =0,
: . : : : .. LF(3)
admits at least two positive classical solutions. It 1s enough to to verify 5 37 <
1 LF(1) ., . . : . : .
- < TR We observe that in this case, the nonlinearity f 1s not sublinear at
5
Z€T0.

Example 3.4. For each A\ € |0, 3[ the problem

{ —u” = Amax{y/u,u*} in ]0,1].
u(0) =u(l) =0,

admits at least two positive classical solutions.
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We recall that in the Amann theorem, besides the
condition g, 1 _ .,

t—+oo

the key assumption Is

Hence, the Amann theorem cannot applied to none of
previous examples since, there, one has f(0)=0.
Moreover, we also observe that

f(0)>0 = f sublinear at 0*




We observe that our results and the Amann theorem are mutually
Independent. Indeed, on the hand, we can apply our results to problems
where the result of Amann cannot be applied, as seen in the previous
examples. On the other hand, Amann requires only the superlinearity at
Infinity and, in addition, when we can apply both the results, the value 4
obtained in Amann, even if given in a theorical form, is the best. So, In
this latest case we can use our results as a complement to the result of
Amann in order to give a numerical lower bound of 4, that Is,

L <A.
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A EINAL REMARK

Applying the Mountain Pass Theorem with the help of the local minimum
theorem we obtain, roughly speaking, these two types of results:

[ superlinear at zero and f sublinear at infinity —two positive solutions
(by applying the three critical points theorem)

f sublinear at zero and f superlinear at infinity —two positive solutions
(by applying the two non-zero critical points theorem)
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A EINAL REMARK

Indeed, we have actuallv reauired

F(e) 1F(d)

2 2
c 4 d
which is more general than the superlinearity at zero, and

for some ¢ <d

F(e) _ 1F(d)
2 4 d?
which is more general than the sublinearity at zero.

for some d<c

So in both cases we have no condition at zero, while at + <o, we require

either the sublinearity or the superlinearity. It depends, in both cases, by
the Palais-Smale condition.



Is it possible to establish a result of multiple solutions without any
conditions at infinity?

To this aim we explicit the following remark on the mountain pass
geometry and on the Palais-Smale condition. At first we recall again the

mountain pass theorem.

The Mountain Pass Theorem

1. Mountain pass geometry
2. Palais-Smale condition

Then, there Is a critical point.
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We have two different structures of the mountains. The structure of Salina

which is a general structure and the structure of Castelbuono which is a
special structure of the mountains.

Is it possible to give an analytic form to a structure of type Castelbuono?

The answer is positive and the following analytic form expresses a
structure of type Castelbuono:

; ¥ ?,.,,
there is r > 0 such that Sup W(u) < -
ued—1(]—oo,r[) 2

If we combine this condition with that of the mountain pass geometry,
we get a strong mountain pass geometry.
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A FINAL REMARK
The Mountain Pass Theorem

1. Mountain pass geometry
2. Palais-Smale condition

Then, there is a critical point.

A special version of the Mountain Pass Theorem
1. Strong mountain pass geometry
2. Weak Palais-Smale condition

Then, there is a critical point near to the local minimum.

BONANNO G., CANDITO P., Non-differentiable functionals and applications to elliptic problems with discontinuous
nonlinearities, Journal of Differential Equations 244 (2008), 3031-3059.
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Corollary 3.1. Assume that there are two positive constants py, p2 and v € X, with p1 < ®(v) <
p2/2, such that

T (u)

o | -
=[] =1
e [ P
-

iy SUPueg—l (l—oc.o1D
(LI ) 1
({If ) SuPuE*ﬁ_l{]—m,pQ[}
2 %

A

Fu— b=
= %

T (u)

—
=|
R

L

<

S
_—
=|
—

Assume also that for each

o _:]2@@) min! P . p2/2 }[
el T@) I SUPea-1gco,pn T ) SUPeq-1 (00, pop T (1)

one has

2
(b3) the functional @ — LT fulfills (PS)Z, c € R.

Then, for each » € A:’Dl .7 the functional I admits three critical points uy, ua, uy which lie in

@~ (1—00, pa).
BONANNO G., CANDITO P., Non-differentiable functionals and applications to elliptic problems with discontinuous
nonlinearities, Journal of Differential Equations 244 (2008), 3031-3059.
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A FINAL REMARK

Theorem. Assume that there are three positive constants
2
c1, d and co, with ¢c1 < d < ?CQ, such that

F(er) _ 1F(d)

2 6 d?
and
F(c) 1 F(d)
2 T 12 2
Then, for each \ € }12 @ . 1min {2 C% [
F(d)’ F(Cl) F'(e9)

problem (PA) admits at least three (nonnegative) classical
solutions u;, 1 = 1.2, 3, such that

= 1,2.3.
ln[ggii] |w; ()| < ca, 1 =1,2,3









