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The (AR) condition 

is a bit more strong than   

q>1 

that is, f is more than superlinear at infinity.   

The condition  f(0)>0  implies 

1’ 

that is, f is sublinear at zero.   



 
Condition           can be true even if  f(0)=0, while if f(0)>0  

then  0  is not a solution of the problem. 

So, roughly speaking, Theorem of Amann ensures two 

positive solutions if   

f is more than sublinear at zero  

and  it is superlinear at infinity,  

while Theorem of Crandall-Rabinowitz ensures two positive 

solutions if   

f is more than sublinear at zero  

and it is more than superlinear at infinity. 

 

In both cases 0 is not a solution of the problem. 

1’ 



 

where  0<s<1<q,  with q subcritical (or critical). 



 
In this case   

                         f(u)=           

for which 

0 is a solution of the problem  

that is, f is more than  

superlinear at infinity 

that is, f is sublinear at zero 

, q>1 



 
The aim of this talk is to present an existence result of two  

positive solutions for the previous problems by requiring,  

besides the (AR) condition, a condition which is more general  

than the sublinearity at zero.   Precisely, in the ordinary case,  

we require:    

 

Function  F is the primitive of  f. So, in particular,  

1’’ 

implies  1’’ 



 
In addition, it may be satisfied also in some case where the  

functions f  are superlinear (or linear) at zero. 

 

A similar situation one has for elliptic case. In this case  

such a condition is a bit less simple.  

 

 

The basic ingredients of such a result  are: 

a theorem of local minimum 

and 

the Ambrosetti-Rabinowitz theorem. 



 

 











   Some remarks on the classical Ambrosetti-
Rabinowitz theorem are presented. In 
particular, it is observed that the 
geometry of the mountain pass, if the 
function is bounded from below, is 
equivalent to the existence of at least two 
local minima, while, when the function is 
unbounded from below, it is equivalent to 
the existence of at least one local 
minimum.  

 



     So, the Ambrosetti-Rabinowitz theorem 
actually ensures three or two distinct 
critical points, according to the function is 
bounded from below or not. 

 
 

 

 

 
 



 



• So, the Ambrosetti-Rabinowitz theorem, 
when the function is bounded from below 
actually ensures three distinct critical 
points.  

 

• In fact, in this case the mountain pass 
geometry implies the existence of two 
local minima and the Pucci-Serrin 
theorem ensures the third critical point. 



• In a similar way it is possible to see that, 
when the function is unbounded from 
below,  the mountain pass geometry is 
equivalent to the existence of at least one 
local minimum. 

 

In this case, the following condition is 
requested:  

The function I is bounded from below  

on every bounded set of X.  

 



 
 REMARK 

BONANNO G., A characterization of the mountain pass geometry for functionals bounded from below, Differential and 

Integral Equations 25 (2012), 1135-1142. 

 



    Our aim is to present a local minimum 
theorem for functionals of the type: 

 

 
 - 

Φ - Ψ 



     It is an existence theorem of a critical point 

for continuously Gâteaux differentiable 

functions, possibly unbounded from below.  

 

 
 

   The approach is based on Ekeland’s 

Variational Principle applied to a non-

smooth variational framework by using also 

a novel type of Palais-Smale condition which 

is more general than the classical one. 

 

 
 

BONANNO G., A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, 75 (2012), 2992-3007. 

 
BONANNO G., Relations between the mountain pass theorem and local minima, Advances in Nonlinear Analysis, 1 (2012), 

205-220. 
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Three consequences 



 
Three consequences 



 
Three consequences 



We have seen that the mountain pass theorem is actually a theorem of 

multiplicity. In the sense that 

1. If the functional is bounded from below, then we have at least three 

critical points; 

2. If the functional is unbounded from below, then we have at least two 

critical points. 

Indeed, in such a theorem, one of the key assumptions, that is, the 

mountain pass geometry is equivalent to the existence of local minima.  

Thus, by combining the mountain pass theorem with the local minimum 

theorem, we get multiple solutions. 

 

The Mountain 

Pass Theorem + 
The Local 

Minimum 

Theorem 
= 

MULTIPLE 
CRITICAL 
POINTS 



To be precise, from the mountain pass theorem we obtain the following 

multiple critical points results: 

 

A Three Critical Points Theorem  

 by using the first and the second consequence of the local minimum 

theorem; 

 

A Two Critical Points Theorem  

 by using the first consequence of the local minimum theorem; 

 

A Two Nonzero Critical Points Theorem  

 by using the third consequence of the local minimum theorem. 

 

 



Clearly, since such results are obtained from the mountain pass theorem 

can happen that in the applications we get results already well-

known or results that can be directly obtained by the mountain pass 

theorem and classical techniques. This can often happen, for 

instance, in the case of  two critical points theorems. While, the 

situation is different in the cases of  three critical points theorem and  

two nonzero critical points theorem.   

 

Now, we give the statements of such moltiple critical points. 
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 Consider the following two point boundary value 
problem 

where f : R → R is a continuous function and  λ 

is a positive real parameter. Put  

 for all ξ ∈ R and assume, for clarity, that f is 

nonnegative.  



 

(1) 

(2) 



• Two-point boundary value problems 

• Neumann boundary value problems 

•  Mixed boundary value problems 

•  Sturm-Liouville boundary value problems 

•  Hamiltonian Systems 

•  Fourth-order elastic beam equations 

•  Boundary value problems on the half-line 

•  Nonlinear diffence problems 

• Impulsive equations 

• Fractional equations 

• Impulsive fractional equations 



• Elliptic Dirichlet problems involving the p-lapacian with p>n  

• Elliptic Neumann  problems involving the p-laplacian with p >n 

• Mixed elliptic problems involving the p-laplacian with p >n 

•  Elliptic Systems 

• Elliptic Dirichlet problems 

• Elliptic Neumann problems 

• …. 

• …. 

• ….  



 

 

 

 

Papers based on the PUCCI-SERRIN THEOREM 
 

• RICCERI B., On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220–226. 

• BONANNO G., Some remarks on a three critical points theorem, Nonlinear Analysis 54 (2003), 651-665. 

•AVERNA D., BONANNO G., A three critical points theorem and its applications to ordinary  Dirichlet problem, 

Topological Methods in Nonlinear Analysis 22 (2003), 93-103. 

•ARCOYA  D., CARMONA J., A nondifferentiable extension of a theoem of Pucci-Serrin and applications,Journal of 

Differential Equations, 235 (2007), 683-700. 

•BONANNO G., MARANO S.A., On the structure of the critical set of non-differentiable functions with  a weak 

compactness condition, Applicable Analysis, 89 (2010), 1-10. 

•BONANNO G., A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, 75 (2012), 2992-3007. 

 

Some versions in the non-smooth case 
• BONANNO G., MOTREANU D., WINKERT P., Variational-hemivariational  inequalities with small perturbations 

of nonhomogeneous Neumann boundary conditions, Journal of Mathematical Analysis and Application, 381 (2011), 627-

637. 

• BONANNO G., WINKERT P., Multiplicity results to a class of variational-hemivariational inequalities, Topological 

Methods in Nonlinear Analysis, 43 n.2 (2014), 493–516. 

• BONANNO G., MOTREANU D., WINKERT P.,  Boundary value problems with nonsmooth potential, constraints 

and parameters, Dynamic Systems and Applications 22 (2013), 385-396. 

 

 

 



 

Differential and Integral Equations, to appear. 



BONANNO G., LIVREA R., MAWHIN J., Existence results for parametric boundary value problems involving the mean 
curvature operator, Nonlinear Differential Equations and Applications NoDEA, 22 (2015), 411-426. 

 
BARLETTA G., BONANNO G., O’REGAN D., A variational approach to multiplicity  results for boundary value problems 
on the real line, Proceedings of the Royal Society of Edinburgh, Section A, 140 (2015), 13-29. 

 
BONANNO G., RODRÍGUEZ-LÓPEZ R., TERSIAN S., Existence of solutions to boundary value problem for impulsive 
fractional equations, Fractional Calculus and Applied Analysis, 17 n.3 (2014), 717-744. 

 
BONANNO G., CANDITO P., MOTREANU D., A coincidence point theorem for sequentially continuous mappings, 
Journal of Mathematical Analysis and Application, 435 (2016), 606-615.  

 
BONANNO G., D’AGUI’ G., PAPAGEORGIOU N.S., Infinitely many solutions for mixed elliptic problems involving the p-

Laplacian, Advanced in Nonlinear Studies 15 (2015), 939-950. 

 
BONANNO G., O’REGAN D., VETRO F., Sequences of distinct solutions for boundary value problems on the real line, 
Journal of Nonlinear and Convex Analysis, 17 n.2 (2016), 365-375. 

BONANNO G., CHINNI’ A., TERSIAN S., Existence results for a two point boundary value problem involving a 
fourth-order equation, Electronic Journal of Qualitative Theory of Differential Equations, 2015, n.33 (2015), 1-9. 

 BONANNO G., DI BELLA B., HENDERSON J., Infinitely many solutions for a boundary value problem with impulsive 
effects, Boundary Value Problems n.278 2013 (2013), 1-14. 

 BONANNO G., TORNATORE E., Existence and multiplicity of solutions for nonlinear elliptic Dirichlet systems, Electronic 
Journal of Differential Equations, 2012 n.183 (2012), 1-11. 

 



 



 

AR 



If in addition we assume that  

(hence f(0)=0, for which the problem admits the zero solution. Moreover,  

in this case, one has               ) 

 

we obtain the same result of Ambrosetti and Rabinowitz. 

 

If, on the contrary, we assume  

                                             f(0)>0    

(that is, f(0) ≠ 0, for which the problem does not admit the zero 

solution. ) 

 

we obtain a result of  type Crandall and Rabinowitz.  



 

(G2) 



path 

u0 

 local minimum u1 such that I(u1)<I(u0) 

u1 

LEVEL K>0 

BONANNO G., D’AGUI’ G., Two non-zero solutions for elliptic Dirichlet problems,  

Zeitschrift für Analysis und ihre Anwendungen , 35 n.4 (2016), 449-464. 



 

    



 



 





Superlinear at 0 

Superlinear at + ∞  



Linear at 0 

Superlinear at + ∞  



Sublinear at 0 

Superlinear at + ∞  



We recall that in the Crandall-Rabinowitz theorem, 

besides (AR) condition, the key assumption is 

 

f(0)>0. 

 

Hence, the Crandall-Rabinowitz theorem cannot 

applied to none of previous examples since, there, one 

has f(0)=0. 

Moreover, we also observe that  

             f(0) > 0               f sublinear at 0 

f(0)>0 

+ 



Now, put 

Indeed, it is enough to observe that  

So, from our result applied to                 (                   ))  we obtain the 

conclusion. 



. 



We observe that our results and the Ambosetti-Brezis-Cerami as well as 

Crandall-Rabinowitz are mutually independent. Indeed, on the hand, we 

can apply our results to problems where ABC and CR cannot be applied, 

as seen in the previous examples. On the other hand, when we can apply 

both ABC and our results, the value Λ obtained in ABC, even if given in a 

theorical form, is the best. So, in this latest case we can use our results 

as a complement to ABC in order to give a numerical lower bound of Λ, 

that is, 

µ  < Λ. 

The same remark also for CR holds.     

* _ 



We observe that, as in recent results, we can use a condition which is a 

bit more general than the (AR)-condition, by using the (C)-condition 

instead of (PS)-condition. To be precise, we can assume in our theorem, 

the following conditions 

instead of the (AR)-condition. So, our theorem can be stisfied by 

functions which are only superlinear at + ∞, as for instance, the 

following function: 



Such a function is linear at 0 and only superlinear at + ∞. 

In any case, the condition (b) does not exhaust the entire class of 

functions which are superlinear at infinity. For example, the following 

function 

 

 

does not satisfy neither the (b2)-condition nor the (AR)-condition. 



ORDINARY CASE 

Previous results also for the ordinary case holds true. However, in this 

case we can obtain the following more precise result.  



                                                                                        

 
and in this case the interval becames  

 

 

 
So, in particular, our result holds by assuming, besides the (AR) – condition, the 

following condition   





We recall that in the Amann theorem, besides the 

condition                    , 

 

 

the key assumption is 

 

Hence, the Amann theorem cannot applied to none of 

previous examples since, there, one has f(0)=0. 

Moreover, we also observe that  

             f(0) > 0               f sublinear at 0 

f(0)>0 

+ 



We observe that our results and the Amann theorem are mutually 

independent. Indeed, on the hand, we can apply our results to problems 

where the result of Amann cannot be applied, as seen in the previous 

examples. On the other hand, Amann requires only the superlinearity at 

infinity and, in addition, when we can apply both the results, the value Λ 

obtained in Amann, even if given in a theorical form, is the best. So, in 

this latest case we can use our results as a complement to the result of 

Amann in order to give a numerical lower bound of Λ, that is, 

  λ < Λ. 

.     

_ 

_ 
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Applying the Mountain Pass Theorem with the help of the local minimum 

theorem we obtain, roughly speaking, these two types of results: 

 

f superlinear at zero and f sublinear at infinity →two positive solutions 

(by applying the three critical points theorem) 

 

f sublinear at zero and f superlinear at infinity →two positive solutions 

(by applying the two non-zero critical points theorem) 

 

 

   



 

Indeed, we have actually required  

 

 

 

 

 

   

 

which is more general than the superlinearity at zero, and 

 

 

which is more general than the sublinearity at zero. 

 

So in both cases we have no condition at zero, while at + ∞, we require  

either the sublinearity or the superlinearity. It depends, in both cases, by  

the Palais-Smale condition.  

 



 

Is it possible to establish a result of multiple solutions without any 

conditions at infinity? 

 

To this aim we explicit the following remark on the mountain pass 

geometry and on the Palais-Smale condition. At first we recall again the 

mountain pass theorem. 

 
The Mountain Pass Theorem  

1. Mountain pass geometry 

2. Palais-Smale condition 

 

Then, there is a critical point. 



 



 



 



 



 



 



 



 



 



 



 



 

Mountain pass point 



 

Mountain pass point 



 

Mountain pass point 



 



 

→ + ∞  



 



 



 



We have two different structures of the mountains. The structure of Salina 

which is a general structure and the structure of Castelbuono which is a  

special structure of the mountains. 

 

Is it possible to give an analytic form to a structure of type Castelbuono? 

 

The answer is positive and the following analytic form expresses a 

structure of type Castelbuono:  

 

 

If we combine this condition with that of the mountain pass geometry,  

we get a strong mountain pass geometry. 
 



The Mountain Pass Theorem  

1. Mountain pass geometry 

2. Palais-Smale condition 

 

Then, there is a critical point. 

A special version of the Mountain Pass Theorem  

1. Strong mountain pass geometry 

2. Weak Palais-Smale condition 

 

Then, there is a critical point near to the local minimum. 

BONANNO G., CANDITO P., Non-differentiable functionals and applications to elliptic problems with discontinuous  
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