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Main topics of our research:

Third order differential equations (1996–2000) Equivalence
theorem on properties A,B.

Asymptotic theory for second order nonlinear differential
equations (2000–2016)

Higher order differential equations (2011–2014)
Equivalency for disconjugate operators. Oscillation and
asymptotics for equations with the middle term.

Difference equations (since 2001) Similarities and
discrepancies between continuous and discrete case.

Boundary value problems for second order differential
equations on the half-line (since 2011)

... insieme abbiammo publicato 57 lavori.
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Motivation: PDE with p-Laplacian

div
(
|∇u|p−2∇u

)
+ B(|x |)F (u) = 0, x ∈ E ,

where E = {x ∈ Rn : |x | ≥ c > 0}. Put r = |x |. The function
u = u(x) is its radially symmetric solution ⇔ y = y(r) = u(|x |) is
a solution of second order ODE(

rn−1Φ(y ′)
)′

+ rn−1B(r)F (y) = 0, (r ≥ c). (1)

where Φ(u) = |u|p−2u, p > 1.

p = 2: p-Laplacian  Laplacian: ∆u = div grad u

n = 2 :
∫∞
c

1
rn−1 dr =∞ . . . Case I

n = 3 :
∫∞
c

1
rn−1 dr <∞ . . . Case II
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Let α = p − 1. Then (1) can be written as equation(
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0 (E)

Assumptions: a, b ∈ C [0,∞), a(t) > 0 and b(t) ≥ 0 for t ≥ 0,
sup {b(t) : t ≥ T} > 0 for any T ≥ 1, α > 0, β > 0.

Case I:

∫ ∞
0

a−1/α(s)ds =∞,
∫ ∞
0

b(s)ds <∞,

Case II:

∫ ∞
0

a−1/α(s)ds <∞,
∫ ∞
0

b(s)ds =∞.

Two different cases:

α = β (half-linear case)

α 6= β (quasi-linear case)
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Historical survey

Emden-Fowler differential equation

x ′′ + b(t)|x |β sgn x = 0, β 6= 1, β > 0. (2)

where a, b are positive continuous functions for t ≥ 0.

β > 1: super-linear equation, β < 1: sub-linear equation

↪→ Emden (1907): Gaskugeln, Anwendungen der mechanischen
Warmentheorie auf Kosmologie und metheorologische Probleme,
Leipzig.

↪→ Fowler (1930): The solutions of Emden’s and similar differential
equations, Monthly Notices Roy. Astronom. Soc.

↪→ Atkinson (1955), Moore and Nehari (1959) . . .β > 1

↪→ Belohorec (1961) . . .β < 1
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A solution x is nonoscillatory if it has no zero for large t.
In view of the sign of b, all nonoscillatory sol’s of (2) satisfy

x(t)x ′(t) > 0 for large t.

If x is a sol. of (2), then −x is a sol. too. So, we will consider
only nonoscillatory solutions which are eventually positive.

Positive solutions can be classified as:

subdominant ⇐⇒ x(∞) = cx , x ′(∞) = 0,

intermediate ⇐⇒ x(∞) =∞, x ′(∞) = 0,

dominant ⇐⇒ x(∞) =∞, x ′(∞) = dx ,

cx , dx are positive constants.

If x , y and z are subdominant, intermediate and dominant sols,
then

0 < x(t) < y(t) < z(t) for large t.
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Moore and Nehari (Trans. Amer. Math. J. 1959): β > 1

Necessary/sufficient conditions for the existence of dominant
solutions of (2)

Necessary/sufficient conditions for the existence of
subdominant solutions of (2)

The above three types of nonoscillatory sols cannot coexist
simultaneously!

No conditions for the existence of intermediate solutions are
given.

Two years later Belohorec proved the same results in the sublinear
case, i.e. β < 1.
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Equation with p-Laplacian

Due to the interest for radially symmetric solutions of PDE with
p-Laplacian, Kusano and Elbert (1990), Kusano et all (1998),
Mirzov (2000)...(

a(t)|x ′|α sgn x ′
)′

+ b(t)|x |β sgn x = 0 (t ≥ 0). (E)

Assumptions: α > 0, β > 0, a, b ∈ C [0,∞), a(t) > 0, b(t) > 0.

Ia =

∫ ∞
0

a−1/α(s)ds =∞, Ib =

∫ ∞
0

b(s)ds <∞.

For (E) the above classification as subdominant, intermediate and
dominant solutions continues to hold by replacing in the Moore
and Nehari classification the derivative with the quasiderivative

x ′  x [1] = a(t)|x ′(t)|α sgn x ′(t).
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(
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0 (E)

Jα =

∫ ∞
0

1

a1/α(t)

(∫ ∞
t

b(s) ds

)1/α

dt,

Kβ =

∫ ∞
0

b(t)

(∫ t

0

1

a1/α(s)
ds

)β
dt.

(E) has subdominant solutions ⇐⇒ Jα <∞.

(E) has dominant solutions ⇐⇒ Kβ <∞.

Our target: Quadro completo

Relations between Jα and Kβ?

Necessary/sufficient conditions for the existence of
intermediate solutions ?
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Change of integration for Jα, Kβ

α = β: Z.D.- I. Vrkoč (2004),
α 6= β: M. Cecchi, M. Marini, I. Vrkoč, Z.D., Integral conditions
for nonoscillation of second order nonlinear differential equations,
Nonlinear Anal. 2006.

 Compatibility of conditions:

Jα =∞, Kβ =∞
Jα <∞, Kβ <∞
Jα =∞, Kβ <∞ for α = β > 1 or α > β

Jα <∞, Kβ =∞ for α = β < 1 or α < β.

If α 6= β, Jα =∞, Kβ =∞, then every sol. is oscillatory
(Mirzov 1993).
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Half-linear equation and ”quadro completo”(
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |α sgn x = 0 (H)

↪→ M. Cecchi, M. Marini, Z.D.,Half-linear equations and
characteristic properties of the principal solution, JDE 2005

↪→ M. Cecchi, M. Marini, Z.D., On intermediate solutions and
the Wronskian for half-linear differential equations, J. Math.
Anal. Appl. 2007

Existence of intermediate solutions:

Sturm-theory for half-linear equation

the notion of principal and nonprincipal solutions

Coexistence problem: Is it possible for (H) the coexistence of
subdominant, intermediate and dominant solutions?
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(C1) : Jα =∞, Kα =∞, if 0 < α;

(C2) : Jα =∞, Kα <∞, if 1 < α;

(C3) : Jα <∞, Kα =∞, if 0 < α < 1;

(C4) : Jα <∞, Kα <∞, if 0 < α.

Theorem 1

If (C1) holds and (H) is nonoscillatory, then M = M∞,0 6= ∅;
If (C2) holds, then M∞,0 6= ∅, M∞,B 6= ∅, MB = ∅;
If (C3) holds, then M∞,0 6= ∅, MB 6= ∅, M∞,B = ∅.
If (C4) holds, then M+

∞,` 6= ∅, MB 6= ∅, M∞0 = ∅.
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Sub-linear equation and ”quadro completo”(
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0, α > β.

Existence of intermediate solutions:

Jα =∞, Kα <∞ : MB = ∅, M∞B 6= ∅, M∞0 6= ∅

Jingfa, Funkc. Equat. (1989) – a priori bounds – fixed point
theorem
Coexistence problem: These three types of nonoscillatory sols
cannot coexist simultaneously!

Jα <∞, Kβ <∞ : MB 6= ∅, M∞B 6= ∅, M∞0 = ∅

M. Naito J. Math. Anal. Appl. (2011).
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Super-linear equation and ”quadro completo”

Coexistence problem – partial answer when 0 < α < 1
(half-linearization method): All three types of nonoscillatory sols
cannot coexist simultaneously!

↪→ M. Cecchi, M. Marini, Z.D., Intermediate solutions for
Emden-Fowler type equations: continuous versus discrete,
Advances Dynam. Systems Appl. (2008).

The difficult problems:

1 Coexistence problem when α < β, α > 1

2 Existence of intermediate solutions when α < β
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Coexistence problem

(
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0 (t ≥ 0) (E)

where b(t) ≥ 0 and α < β.

↪→ M. Marini, Z.D., On super-linear Emden-Fowler type
differential equations, J. Math. Anal. Appl.(2014).

Theorem 2

Let Jα <∞ and Kβ <∞. Then (E) does not have intermediate
solutions.

Consequently, (E) never has simultaneously subdominant,
intermediate and dominant solutions!

This is an extension of Moore-Nehari result for (1).
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Idea of the proof.
Step 1. New Holder-type inequality:

Lemma

Let λ, µ be such that µ > 1, λµ > 1 and let f , g be nonnegative
continuous functions for t ≥ T . Then(∫ t

T

g(s)

(∫ t

s

f (τ)dτ

)λ

ds

)µ

≤ K

(∫ t

T

f (τ)

(∫ τ

T

g(s)ds

)µ

dτ

)(∫ t

T

f (τ)dτ

)λµ−1

K = λµ
(
µ− 1

λµ− 1

)µ−1
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Step 2. Asymptotic property of intermediate solutions for equation(
|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0. (E1)

Lemma

Let 1 < α < β and assume∫ ∞
0

sβb(s)ds <∞.

Then for any intermediate solution x of (9) we have

lim inf
t→∞

tx ′(t)

x(t)
> 0.
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Step 3. Nonexistence of intermediate solution for (E1). Let α > 1,
x be an intermediate solution of (E1). Then

lim
t→∞

t−1x(t) = 0 =⇒ x(t) < t large t.

By Step 2,
tx ′(t) > m x(t). (3)

Suppose ∫ ∞
t1

sβb(s) ds < m/2. (4)

Integrating (E1) on (T , t)(
x ′(T )

)α − (x ′(t)
)α

=

∫ t

T
b(s)xβ−α(s)xα(s)ds <

<
1

m

∫ t

T
b(s)xβ−α(s)sα(x ′(s))αds ≤ (x ′(T ))α

m

∫ t

T
sβb(s)ds ≤ (x ′(T ))α

2
.

Thus
(x ′(T ))α

2
<
(
x ′(t)

)α
,

which gives a contradiction as t →∞, since limt→∞ x ′(t) = 0.
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Step 4. Extension to the general weight a:

Set

A(t) =

∫ t

0
a−1/α(σ)dσ.

The change of variable

s = A(t), X (s) = x(t), t ∈ [0,∞), s ∈ [0,∞)

transforms (E), t ∈ [0,∞), into

d

ds

(
|Ẋ (s)|α sgn Ẋ (s)

)
+ c(s)X β(s) = 0, s ∈ [0,∞),

t(s) is the inverse function of s(t), the function c is given by

c(s) = a1/α(t(s)))b(t(s)).
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Existence of intermediate solutions

Consider (
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0 α < β. (E)

↪→ M. Marini, Z.D., Monotonicity conditions in oscillation to
super-linear differential equations, Electron. J. Qual. Theory
Differ. Equ.(2015).

 Integral conditions in case α < β

Jα =∞, Kβ =∞ (all sols oscillatory)

Jα <∞, Kβ <∞ : MB 6= ∅, M∞B 6= ∅, M∞0 = ∅
Jα <∞, Kβ =∞ : MB 6= ∅, M∞B = ∅, M∞0 6= ∅??
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Necessary condition: If it has intermediate solutions, then

Jα <∞, Kβ =∞. (5)

For Emden-Fowler equation

x ′′ + b(t)|x |β sgn x = 0, β > 1

(5) reads ∫ ∞
1

t b(t)dt <∞,
∫ ∞
1

tβ b(t)dt =∞.
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Consider Emden-Fowler equation

x ′′ + b(t)|x |β sgn x = 0, β > 1 (EF)

where t ≥ 1.

Theorem 3

Let ∫ ∞
1

t b(t)dt <∞,
∫ ∞
1

tβ b(t)dt =∞

and
F (t) = t(β+3)/2b(t) be nonincreasing for t ≥ T .

Then (EF) has infinitely many intermediate solutions which are
positive increasing on [T ,∞).
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Idea of the proof.
Define for any solution x of (EF) the energy function

Ex(t) = t
(
x ′(t)

)2 − x(t)x ′(t) +
2

β + 1
tb(t)|x(t)|β+1. (6)

Lemma

If F (t) = t(β+3)/2b(t) is nonincreasing for t ≥ T , then for any
solution x

d

dt
Ex(t) < 0 t ≥ T .
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Ex(t) = t
(
x ′(t)

)2 − x(t)x ′(t) +
2

β + 1
tb(t)|x(t)|β+1.

Lemma

If x be a subdominant or oscillatory solution of (2), then

lim inf
t→∞

Ex(t) ≥ 0.

Lemma

Eq. (2) has both solutions x for which

Ex(T ) < 0

at some T ≥ 1.
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Existence of x for which Ex(T ) < 0: Let x start at

x(T ) = m > 0, x ′(T ) = θ.

Then

Ex(T ) = T

(
θ2 − 1

T
mθ +

2

β + 1
b(T )mβ+1

)
.

Put

f (θ) = θ2 − 1

T
mθ +

2

β + 1
b(T )mβ+1,

m is a positive parameter. Let θ1, θ2 be the positive zeros of f ,
θ1 < θ < θ2 and

m <

(
1

T 2

β + 1

8b(T )

)1/(β−1)
.

Then Ex(T ) < 0 and x is intermediate.
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Example 1. (Moore-Nehari) Consider

x ′′ +
1

4t(β+3)/2
|x |βsgn x = 0 β > 1 (7)

where t ≥ 1. We have

F (t) = t(β+3)/2b(t) = 1/4.

By Theorem 3 this equation has intermediate solutions such that

x(t) > 0, x ′(t) > 0 t ≥ 1. (8)

One of them is
x(t) =

√
t.

Moreover, this equation has also oscillatory solutions, and
subdominant solutions satisfying (8).
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Example 2. Consider the equation

x ′′ +
3

16

(
1

t

)7/2

x3(t) = 0 (t ≥ 1). (9)

The function F is nonincreasing for t ≥ 1.
By Theorem 3, equation (9) has intermediate solutions which are
positive increasing on [1,∞).
One of them is

x(t) = t3/4,

and the energy function Ex is

Ex(t) =

(
9

16
− 3

4
+

3

32

)
t1/2 < 0

for any t ≥ 1.
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Existence of intermediate solutions of super-linear equation(
a(t)|x ′|α sgn x ′

)′
+ b(t)|x |β sgn x = 0, α < β (E)

in case ∫ ∞
0

a−1/α(s)ds <∞,
∫ ∞
0

b(s)ds =∞.

↪→ M. Marini, Z.D., Positive decaying solutions for differential
equations with phi-laplacian, Bound. Value Probl. (2015).
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Define

A(t) =

∫ ∞
t

a−1/α(s)ds.

Any eventually positive solution is decreasing:

lim
t→∞

x(t) = cx , 0 < cx <∞,

lim
t→∞

x(t)= 0, lim
t→∞

x(t)

A(t)
=∞,

lim
t→∞

x(t)= 0, lim
t→∞

x(t)

A(t)
= cx , 0 < cx <∞.

Intermediate solution=slowly decaying solution
Strongly decaying solution
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Characteristic integrals:

Y =

∫ ∞
1

b(s)

(∫ ∞
s

a−1/α(r)dr

)β
ds,

Z =

∫ ∞
1

(
1

a(s)

∫ s

1
b(r)dr

)1/α

ds.

Equation has strongly decaying sols ⇐⇒ Y <∞.
Equation has sols tending to non-zero constant ⇐⇒ Z <∞.

Coexistence problem:

Theorem 4

Let Y <∞ and Z <∞. Then (E) does not have intermediate
solutions.
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Existence of intermediate solution:

Prototype in Case I:

x ′′ + b(t)|x |β sgn x = 0, β > 1 (1)

Prototype in Case II:

(t2α|x ′|αsgn x ′)′ + b(t)|x |βsgn x = 0, t ≥ 1, (E2)

where
b is differentiable on [1,∞), b(t) > 0∫ ∞

1
a−1/α(t)dt =

∫ ∞
1

t−2(t)dt <∞,
∫ ∞
1

b(t)dt =∞.
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Example 3. Consider (
t2x ′

)′
+ t4/3x3 = 0. (10)

We have

A(t) =

∫ ∞
t

1

s2
ds =

1

t
, Y <∞, Z =∞.

Thus every nonoscillatory solution tends to zero.
Equation (10) has strongly decaying solutions, oscillatory solutions
and solution

x(t) =

√
2

3
t−2/3,

which satisfies

lim
t→∞

x(t)

A(t)
= lim

t→∞
t1/3 =∞,

i.e. x is slowly decaying solution.
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... From continuous to discrete case:

∆2xn + bn|xn+1|λ sgn xn+1 = 0, λ 6= 1.

Physical applications:

↪→ F. Weil (1980): Existence theorem for the difference equation
yn+1 − 2yn + yn−1 = h2f (yn)

↪→ R.B.Potts (1981): Exact solution of a difference approximation to
Duffing’s equation

J. W. Hooker, W.T. Patula (1983):

Oscillation results are discrete analogues of the Atkinson and
Belohorec oscillation criterion

Differential equation has all oscillatory solutions bounded but
difference equation has unbounded oscillatory solutions!

Discrete analogue of Atkinson nonoscillation theorem turns out to
be false! The corresponding difference equation has oscillatory
solution!
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How to explain discrepancies between continuous and discrete
case?

Consider dynamical equation on a time scale T . To study the
effect of the graininess to nonoscillation and asymptotic behavior.
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Il piu nobile piacere ‘e la gioia del comprendere.

The noblest pleasure is the joy of understanding.

Leonardo da Vinci
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Thank you for your attention!
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