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First order RFDEs

Consider the functional differential equation (RFDE for short)

x ′(t) = λf (t, xt), λ ≥ 0 , (1)

where

xt(θ) = x(t + θ), θ ∈ (−∞, 0]

f is a functional vector field tangent to an m-dimensional
smooth manifold M ⊆ Rk continuous and T -periodic in t,
i.e., setting

BU((−∞, 0],M) = {ϕ : (−∞, 0]→ M bounded and unif. cont.},

one has
f : R× BU((−∞, 0],M)→ Rk

such that

f (t, ϕ) ∈ Tϕ(0)M, ∀(t, ϕ) ∈ R× BU((−∞, 0],M)
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The equation x ′(t) = λf (t, xt)

BU((−∞, 0],M) is a metric subspace of BU((−∞, 0],Rk), which
is Banach with the sup norm. The topology in BU((−∞, 0],M) is
stronger than the compact open topology of C ((−∞, 0],M)

Remark

the ODE’s are obtained by setting

f (t, ϕ) := f̃ (t, ϕ(0))

the case of a finite delay τ > 0 is obtained by setting

f (t, ϕ) := f̃ (t, ϕ(0), ϕ(−τ))
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Solutions to x ′(t) = λf (t, xt)

Definition

Given λ ≥ 0, a solution of (1) is a function x : J → M defined on
an unbounded below interval J, such that xt ∈ BU((−∞, 0],M)
and there exists τ < sup J for which

x ′(t) = λf (t, xt) for t > τ

Some references on RFDEs

infinite delay in Euclidean spaces: Hale-Kato (1978),
Hino-Murakami-Naito (1991), Oliva-Rocha (2010),
Novo-Obaya-Sanchez (2007)

finite delay on differentiable manifolds: Oliva (1976)

infinite delay on differentiable manifolds (existence,
uniqueness, continuous dependence):
Benevieri-Calamai-Furi-P. (2013), Discr. Contin. Dynam. Syst.
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Bifurcation branches to x ′(t) = λf (t, xt)

Denote

CT (M) = {x : R→ M, x continuous and T−periodic}

Definition

(λ, x) ∈ [0,+∞)× CT (M) is called a T -periodic pair of

x ′(t) = λf (t, xt)

if x is a solution of the above equation corresponding to λ

For λ = 0, the T -periodic pair (0, x) is such that x is constant, say
x(t) = p, ∀t, and is said to be a trivial pair (denoted by (0, p−))
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Bifurcation branches to x ′(t) = λf (t, xt)

Definition

p ∈ M is said to be a bifurcation point for (1) if any neighborhood
of (0, p−) in [0,+∞)×CT (M) contains nontrivial T -periodic pairs
(λ, x), i.e., with λ > 0.

Let w : M → Rk be the tangent vector field

w(p) =
1

T

∫ T

0
f (t, p−) dt “average wind”

Theorem (necessary condition)

p ∈ M a bifurcation point =⇒ w(p) = 0
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Bifurcation branches to x ′(t) = λf (t, xt)

Let us now give a sufficient condition for the existence of a global
bifurcation branch (Benevieri-Calamai-Furi-P. (2013))

Theorem (Rabinowitz type global branch)

Assume f locally Lipschitz in the second variable and sending
bounded sets into bounded sets, M closed in Rk and U open in M.
If deg(w ,U) 6= 0 =⇒ there exists a global bifurcation branch,
i.e. a connected set of nontrivial T -periodic pairs (λ, x), whose
closure contains (0, p−), p ∈ U and w(p) = 0, and

i) either is unbounded

ii) or it goes back to some (0, q−), q /∈ U

Tools

fixed point index for locally compact maps in metric ANRs
(Granas, Nussbaum, Brown)

degree (also called Euler characteristic) of a tangent vector
field (Milnor, Hirsch, Guillemin-Pollack, Furi-P.)
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Bifurcation branches to x ′(t) = λf (t, xt)

Corollary

M compact with Euler-Poincaré characteristic χ(M) 6= 0 =⇒
there exists an unbounded (in λ) global bifurcation branch

Sketch of the proof
Set U = M. By the Poincaré-Hopf theorem

deg(w ,M) = χ(M) 6= 0

Theorem (Mawhin type continuation principle)

Let f be as above and U a relatively compact open subset of M.
Assume that

i) w(p) 6= 0 along the boundary ∂U of U and deg(w ,U) 6= 0;

ii) for any λ ∈ (0, 1], the T -periodic orbits of x ′(t) = λf (t, xt)
lying in U do not meet ∂U.

Then, the equation x ′(t) = f (t, xt) has a T-periodic orbit in U.
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Second order RFDEs

Let us now give some ideas of second order RFDEs.
Consider the retarded motion equation on an m-dimensional
smooth manifold M ⊆ Rk

x ′′π(t) = λf (t, xt), λ ≥ 0 , (2)

where

x ′′π(t) is the tangential (or parallel) component of the
acceleration x ′′(t) ∈ Rk at the point x(t) ∈ M.

f is a functional vector field tangent to M, continuous and
T -periodic in t

Aim: obtain global bifurcation results
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Bifurcation branches to x ′′π(t) = λf (t, xt)

Here branches are in

[0,+∞)× C 1
T (M)

where

C 1
T (M) = {x : R→ M, x ∈ C 1 and T-periodic}

For λ = 0 one gets the inertial motion equation

x ′′π(t) = 0

whose solutions are the geodesics on M.

Among the T -forced pairs we shall consider as trivial those of the
type (0, x) with x constant. (not all pairs (0, x) are trivial!)
Thus, if x is a T -periodic nonconstant geodesic, then the pair
(0, x) is nontrivial

a nontrivial pair (λ, x) “close” to (0, p−) =⇒ λ > 0
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Bifurcation branches to x ′′π(t) = λf (t, xt)

Let f̄ : M → Rk be the tangent vector field

f̄ (p) =
1

T

∫ T

0
f (t, p−) dt “average force”

Theorem (necessary condition)

p ∈ M a bifurcation point =⇒ f̄ (p) = 0

Theorem (sufficient condition)

U open in M and deg(f̄ ,U) 6= 0 =⇒ there exists a global
bifurcation branch

(Benevieri-Calamai-Furi-P. (2014), J.Fixed Point Th. Appl.)
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Bifurcation branches to x ′′π(t) = λf (t, xt)

Corollary (Benevieri-Calamai-Furi-P., 2013, Adv.Nonlinear Stud.)

M compact with Euler-Poincaré characteristic χ(M) 6= 0 =⇒
there exists an unbounded global bifurcation branch

The branch might be bounded with respect to λ.
In particular,

x ′′π(t) = f (t, xt), (λ = 1)

might not have a solution.

The above equation is solvable in the case M = S2 (spherical
pendulum) and M = S2n (Benevieri-Calamai-Furi-P., 2011, J.
Dyn. Diff. Eq.)

Open problem even for ODEs
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Bifurcation branches to x ′′π(t) = λf (t, xt)

Comments (on the method used for second order equations)

A second order equation on a manifold M can be transformed into
a first order system on the tangent bundle TM, but not of the
type considered above, i.e. of the type

z ′(t) = λh(t, zt).

In fact, the inertial equation

x ′′π(t) = 0

does not correspond (in the phase space) to the equation

z ′(t) = 0

For this reason second order equations cannot be handled with the
techniques previously developed for first order ones

Maria Patrizia Pera Bifurcation of periodic solutions


