Salta gli elementi di navigazione
banner
logo ridotto
logo-salomone
Gruppo di ricerca in Metodi Matematici per l'Ingegneria dell'Informazione

Registro delle lezioni a.a. 2018/19

1) 26/02/2019 (2 ore): Introduzione al corso: programma, testi di riferimento, modalità di esame. Introduzione storica: probabilità classica, statistica (frequentista), soggettiva, con esempi.

2) 28/02/2019 (2 ore): Metodi di conteggio (calcolo combinatorio): cardinalità degli insiemi, permutazioni semplici e con ripetizioni, disposizioni semplici e con ripetizioni, combinazioni semplici e con ripetizioni. Spazio campione e spazio degli eventi. Eventi e insiemi, evento certo e evento impossibile. Richiami di teoria degli insiemi e proprietà delle operazioni. Diagrammi di Venn.

3) 5/03/2019 (2 ore): Assiomi di probabilità (Kolmogorov) e loro conseguenze. Il caso di spazio campione a dimensione infinita. Definizione di eventi indipendenti e di probabilità condizionata. Teorema delle probabilità totali e la formula di Bayes. Esempi.

4) 7/03/2019 (2 ore):Assiomi di probabilità nel caso di spazio campionario discreto infinito e continuo infinito. Esempi di applicazione del teorema delle probabilità totali e della formula di Bayes. Il caso dei falsi positivi nei test medici (I parte).

5) 12/03/2019 (2 ore): Il caso dei falsi positivi nei test medici (II parte; il paradosso dei tre prigionieri. Spazi di probabilità, definizione di variabile aleatoria (v.a.). Caso discreto finito, densità di probabilità, valore atteso e varianza. Esempi elementari: lancio di moneta e di dado.

6) 14/03/2019 (2 ore): Definizione di funzione di ripartizione: casi discreto-finiti e numerabili, esempi. Il caso continuo. Proprietà della funzione di ripartizione e della densità di probabilità. Estensione delle definizioni dei parametri valore atteso, varianza e deviazione standard ai casi di v.a. con dominio infinito (numerabile e continuo).

7) 19/03/2019 (2 ore): Valore atteso di funzioni di v.a.. Proprietà del valore atteso e della varianza. Esempi di funzioni di ripartizione, caso monotono crescente, quantili. Formula per il calcolo della varianza. Esempi.

8) 21/03/2019 (2 ore): Disuguaglianze di Markov e Chebycev (con dimostrazione). Distribuzione di Bernoulli e distribuzione binomiale, valori attesi e varianze.

9) 26/03/2019 (2 ore): Esercizi sulla distribuzione binomiale. Distribuzione discreta uniforme, valore atteso e varianza (con uso delle somme telescopiche). Distribuzione geometrica e geometrica modificata, valore atteso e varianza; mancanza di memoria.

10) 28/03/2019 (2 ore): Distribuzione ipergeometrica e sua approssimazione mediante la distribuzione binomiale; distribuzione di Poisson e suo legame con la distribuzione binomiale, valori attesi e varianze. Esempi per la distribuzione geometrica e la disuguaglianza di Chebychev.

11) 2/04/2019 (2 ore): Un esempio di confronto fra uso della distribuzione binomiale e quella di Poisson; la distribuzione di Poisson nel dominio del tempo; derivazione della distribuzione esponenziale dalla distribuzione di Poisson. Distribuzione continua uniforme: valore atteso e varianza.

12) 4/04/2019 (2 ore): Distribuzione normale, funzione di ripartizione e sue proprietà. Normale standard, dimostrazione della sua normalizzazione, valore atteso e varianza. Quantili della normale standard.

13) 9/04/2019 (2 ore): Esempi ed esercizi su distribuzione normale e di Poisson. 

14) 11/04/2019 (2 ore): Un esercizio sulla distribuzione esponenziale. Il teorema di Bernoulli (approssimazione della distribuzione binomiale con la distribuzione normale). V.a. multivariate, caso bivariato. Definizione della funzione di ripartizione per v.a. discrete e continue e sue proprietà. Densità e densità marginali per v.a. bivariate.

15) 2/05/2019 (2 ore): Tavole della normale. V.a. bivariate, valori attesi e varianze. Caso discreto e continuo. Covarianza, suo significato e proprietà principali. Il coefficiente di correlazione.

 16) 7/05/2019 (2 ore): Esercizi su densità bivariate continue: coefficiente di nomalizzazione, densità marginali, valore atteso, varianza e covarianza; casi di v.a.dipendenti e indipendenti. Probabilità condizionata fra v.a. dipendenti e indipendenti. Principali proprietà dei parametri per v.a. indipendenti.

 17) 9/05/2019 (2 ore): Definizione della v.a. media campionaria, suo valore atteso e varianza. La legge debole dei grandi numeri (con dimostrazione), il teorema del limite centrale, il teorema di Berry-Esseen. Le distribuzioni di Pearson (Chi^2), t di Student e di Fischer e loro relazioni con la normale standard. La distribuzione normale bivariata.

 18) 14/05/2019 (2 ore): Un problema modellizzabile con la distribuzione Chi^2. Introduzione alla Statistica: individui, popolazione, carattere, campione; caratteri qualitativi e quantitativi (discreti e continui). Classi di modalità, moda  classi modali.

 19) 16/05/2019 (2 ore): Parametri dei vettori statistici: media aritmetica, geometrica ed armonica, varianza e deviazione standard. Mediana, quartili, quantili e percentili. Esempi. Campioni bivariati: covarianza e coefficiente di correlazione, introduzione alla retta di regressione lineare (metodo dei minimi quadrati).

20) 21/05/2019 (2 ore): Retta di regressione lineare. Richiami di algebra dei vettori.

 
ultimo aggiornamento: 22-Mag-2019
Unifi Dipartimento di Matematica "Ulisse Dini" Home page

Inizio pagina